Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Discov ; 9(1): 401, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37903788

ABSTRACT

Imatinib resistance remains an unresolved problem in CML disease. Activation of JAK2/STAT3 pathway and increased expression of RUNX1 have become one reason for development of imatinib resistance in CML subjects. Metformin has gained attention as an antileukemic drug in recent times. However, the molecular mechanism remains elusive. The present study shows that RUNX1 is a novel substrate of AMP-activated kinase (AMPK), where AMPK phosphorylates RUNX1 at Ser 94 position. Activation of AMPK by metformin could lead to increased cytoplasmic retention of RUNX1 due to Ser 94 phosphorylation. RUNX1 Ser 94 phosphorylation resulted in increased interaction with STAT3, which was reflected in reduced transcriptional activity of both RUNX1 and STAT3 due to their cytoplasmic retention. The reduced transcriptional activity of STAT3 and RUNX1 resulted in the down-regulation of their signaling targets involved in proliferation and anti-apoptosis. Our cell proliferation assays using in vitro resistant cell line models and PBMCs isolated from CML clinical patients and normal subjects demonstrate that metformin treatment resulted in reduced growth and improved imatinib sensitivity of resistant subjects.

2.
FEBS J ; 290(18): 4480-4495, 2023 09.
Article in English | MEDLINE | ID: mdl-37171230

ABSTRACT

Imatinib is the frontline treatment option in treating chronic myelogenous leukemia (CML). Hitherto, some patients relapse following treatment. Biochemical analysis of a panel of clonally derived imatinib-resistant cells revealed enhanced glucose uptake and ATP production, suggesting increased rates of glycolysis. Interestingly, increased lactate export was also observed in imatinib-resistant cell lines. Here, we show that metformin inhibits the growth of imatinib-resistant cell lines as well as peripheral blood mononuclear cells isolated from patients who relapsed following imatinib treatment. Metformin exerted these antiproliferative effects by inhibiting MCT1 and MCT4, leading to the inhibition of lactate export. Furthermore, glucose uptake and ATP production were also inhibited following metformin treatment due to the inhibition of GLUT1 and HK-II in an AMPK-dependent manner. Our results also confirmed that metformin-mediated inhibition of lactate export and glucose uptake occurs through the regulation of mTORC1 and HIF-1α. These results delineate the molecular mechanisms underlying metabolic reprogramming leading to secondary imatinib resistance and the potential of metformin as a therapeutic option in CML.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Metformin , Humans , Imatinib Mesylate/pharmacology , Metformin/pharmacology , Metformin/therapeutic use , Leukocytes, Mononuclear/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Lactic Acid/metabolism , Glucose/metabolism , Adenosine Triphosphate , Apoptosis
3.
Cell Death Discov ; 8(1): 277, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35672290

ABSTRACT

Activation of the key nutrient cellular sensors mTORC1 and mTORC2 directs the fate of mesenchymal stromal cells (MSCs). Here, we report that glutamine regulates crosstalk between mTOR complexes and lineage commitment of MSCs independent of glucose concentration. High glutamine-induced mTORC1 hyperactivation resulted in the suppression of mTORC2, which otherwise stabilizes RUNX2 via GSK3ß inhibition through pAKT-473. Activation of GSK3ß resulted in the ubiquitination of RUNX2, a key transcription factor for the osteogenic commitment of MSCs. However, low glutamine conditions inhibit mTORC1 hyperactivation followed by increased mTORC2 activation and RUNX2 stabilization. Under diabetic/high-glucose conditions, glutamine-triggered hyperactivation of mTORC1 resulted in mTORC2 suppression, and active GSK3ß led to suppression of RUNX2. Activation of p-AMPK by metformin inhibits high glutamine-induced mTORC1 hyperactivation and rescues RUNX2 through the mTORC2/AKT-473 axis. Collectively, our study indicates the role of glutamine in modulating MSC fate through cross-talk between mTOR complexes by identifying a critical switch in signaling. It also shows the importance of glutamine in modulating molecular cues (mTORC1/p-70S6K/mTORC2/RUNX2) that are involved in driving diabetes-induced bone adipogenesis and other secondary complications.

4.
Biochem Biophys Res Commun ; 534: 461-467, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33246559

ABSTRACT

Treatment relapse due to clonal evolution was shown to be an independent factor for poor prognosis in advanced stages of chronic myeloid leukemia. Overcoming secondary resistance arising due to clonal evolution is still an unmet need and lack of adequate pre-clinical models hampers the identification of underlying mechanisms and testing of alternate treatment strategies. The current study thus aimed to create cellular models to study molecular mechanisms underlying clonal evolution and identify strategies to overcome the secondary drug resistance. Analysis of cell lines derived from three independent cell-based screens revealed the co-evolution specifically of imatinib and HSP90 inhibitor (HSP90i) resistances despite their exposure to a single inhibitor alone. Molecular and biochemical characterization of these cell lines revealed additional cytogenetic abnormalities, differential activation of pro-survival signaling molecules and over expression of ABL kinase and HSP90 genes. Importantly, all the imatinib-HSP90i dual resistant cell lines remained sensitive to sorafenib and vorinostat suggesting their utility in treating patients who relapse upon imatinib treatment due to clonal evolution. In addition, we cite similar examples of dual resistance towards various kinase inhibitors and HSP90i in some cell lines that represent solid cancers suggesting co-evolution leading to secondary drug resistance as a pan-cancer phenomenon. Taken together, our results suggest the efficacy of HSP90i in overcoming drug resistance caused by point mutations in the target kinase but not in cases of clonal evolution.


Subject(s)
Antineoplastic Agents/pharmacology , Clonal Evolution/drug effects , Drug Resistance, Neoplasm , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Imatinib Mesylate/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Cell Line, Tumor , Chromosome Aberrations/drug effects , HSP90 Heat-Shock Proteins/genetics , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Transcriptome/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...