Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Interact ; 175(1-3): 231-4, 2008 Sep 25.
Article in English | MEDLINE | ID: mdl-18606399

ABSTRACT

Isosorbide-2-benzylcarbamate-5-benzoate, a novel butyrylcholinesterase inhibitor, shows interspecies variation in its inhibitory activity (IC(50) of 4.3 nM for human plasma butyrylcholinesterase, but 1.09 microM for mouse plasma butyrylcholinesterase). Stability studies revealed that this drug is resistant to hydrolysis by human plasma (no degradation in 1 h). However, it was found to undergo rapid degradation when incubated with mouse plasma or mouse liver homogenate, yielding benzyl carbamate and benzoic acid. The addition of the carboxylesterase inhibitor bis-(4-nitrophenyl) phosphate (BNPP) inhibited the degradation of the novel drug, indicating that it may be a substrate for both butyrylcholinesterase and carboxylesterase. The absence of carboxylesterase from human plasma explains the drug's stability in this medium. In vivo, pharmacodynamic studies on single doses of 1 mg/kg to naïve male C57BL/6 mice revealed maximal plasma butyrylcholinesterase inhibition 20 min after intraperitoneal administration (approximately 60% inhibition) and 1 h after administration by gavage (approximately 45% inhibition). While this plasma butyrylcholinesterase inhibition was short-lived, the drug also penetrated the blood-brain barrier resulting in a slight (10-15%) but persistent (> or =72 h) reduction in brain butyrylcholinesterase activity.


Subject(s)
Cholinesterase Inhibitors/pharmacology , Isosorbide/pharmacology , Animals , Butyrylcholinesterase/drug effects , Chromatography, High Pressure Liquid , Male , Mice , Mice, Inbred C57BL
2.
Chem Biol Interact ; 157-158: 317-9, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16266694

ABSTRACT

Butyrylcholinesterase [EC 3.1.1.8] present widely in mammalian tissue does not have a precisely defined biological function or known endogenous substrate. However, it plays an important role in the detoxification of certain xenobiotics and is an established vector for the systemic liberation of other drugs from their prodrugs. While investigating a series of isosorbide-based prodrugs, we discovered that BuChE catalyses the hydrolysis of esters of the simple sugar isosorbide with unusually rapidity and in some cases with remarkable regioselectivity. In this study, a series of isosorbide esters were synthesised and their rates of hydrolysis measured by HPLC following incubation in diluted plasma solution. In general, little hydrolysis of the 5-ester group could be observed but the 2-ester group was usually hydrolysed very rapidly and the hydrolysis rate exhibited an unusual dependence on the identity of the 5-group. The results indicate that while the 5-ester group is not itself hydrolysed it is important for productive binding in isosorbide diesters.


Subject(s)
Butyrylcholinesterase/metabolism , Isosorbide/chemistry , Isosorbide/metabolism , Esters/chemistry , Glycolates/chemistry , Humans , Isosorbide/chemical synthesis , Molecular Structure , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...