Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Pharmacol Biochem Behav ; 97(3): 521-30, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21036188

ABSTRACT

Sucrose-rich diets compared to starch-rich diets are known to stimulate overeating under chronic conditions. The present study in normal-weight rats established an acute "preload-to-test meal" paradigm for demonstrating sucrose-induced hyperphagia and investigating possible mechanisms that mediate this behavioral phenomenon. In this acute paradigm, the rats were first given a small (15 kcal) sucrose preload (30% sucrose) for 30 min compared to an equicaloric, starch preload (25% starch with 5% sucrose) and then allowed to freely consume a subsequent test meal of lab chow. The sucrose preload, when compared to a starch preload equal in energy density and palatability, consistently increased food intake in the subsequent test meal occurring between 60 and 120 min after the end of the preload. Measurements of hormones, metabolites and hypothalamic peptides immediately preceding this hyperphagia revealed marked differences between the sucrose vs starch groups that could contribute to the increase in food intake. Whereas the sucrose group compared to the starch group immediately after the preload (at 10 min) had elevated levels of glucose in serum and cerebrospinal fluid (CSF) along with reduced expressions of neuropeptide Y (NPY) and agouti-related protein (AgRP) in the arcuate nucleus (ARC), the subsequent effects (at 30-60 min) just preceding the test meal hyperphagia were the reverse. Along with lower levels of glucose, they included markedly elevated serum and CSF levels of corticosterone and mRNA levels of NPY and AgRP in the ARC. In addition to establishing an animal model for sucrose-induced hyperphagia, these results demonstrate peripheral and central mechanisms that may mediate this behavioral phenomenon.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Corticosterone/metabolism , Hyperphagia/chemically induced , Peptides/metabolism , Sucrose/adverse effects , Animals , Base Sequence , DNA Primers , In Situ Hybridization , Male , Polymerase Chain Reaction , Rats , Rats, Sprague-Dawley
2.
Physiol Behav ; 91(1): 142-53, 2007 May 16.
Article in English | MEDLINE | ID: mdl-17383691

ABSTRACT

To investigate mechanisms that mediate the greater food intake induced by a fat-rich diet, the present study tested an acute "preload-to-test meal" paradigm in normal-weight rats. In this paradigm, the rats were given a small high-fat (HF) compared to low-fat (LF) preload and, after an intermeal interval, allowed to consume freely on a subsequent test meal. Modified versions of this paradigm were tested to determine the robustness of the greater caloric intake induced by the HF preload while standardizing the test protocol. A HF preload of 10-15 kcals, compared to an equicaloric LF preload, significantly increased food intake by 40-50% in the subsequent test meal. This effect, a 4-6 kcal increase, was observed with HF preloads equal in energy density and palatability to the LF preloads. It was evident with preloads or test meals that were liquid or solid, preloads that were injected, test meals that had variable fat content, and natural intermeal intervals of 60-120 min. This overeating after a HF preload was invariably associated with a 2- to 3-fold increase in circulating levels of triglycerides (TG), with no change in leptin or insulin. It was also accompanied by increased expression of the orexigenic peptides, galanin in the paraventricular nucleus and orexin in the perifornical lateral hypothalamus. Moreover, if given repeatedly over several days, the HF compared to equicaloric LF preload significantly increased 24-h food intake. These results establish a protocol for studying the phenomenon of increased feeding on a HF diet under controlled conditions and suggest possible underlying mechanisms involving circulating lipids and orexigenic peptides.


Subject(s)
Dietary Fats/pharmacology , Energy Intake/physiology , Galanin/blood , Intracellular Signaling Peptides and Proteins/blood , Neuropeptides/blood , Triglycerides/blood , Animals , Body Weight/drug effects , Brain Chemistry/drug effects , Diet , Eating/drug effects , Food Preferences/drug effects , Hyperphagia/chemically induced , Hyperphagia/psychology , Hypothalamus/drug effects , Hypothalamus/metabolism , Insulin/blood , Leptin/blood , Male , Orexins , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Weight Gain/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL