Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Inst Mech Eng H ; 236(10): 1552-1571, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36112885

ABSTRACT

Lower extremity injuries account for over 50% of pedestrian orthopedic injuries in car-to-pedestrian collisions. Pedestrian finite element models are useful tools for studying pedestrian safety, but current models use simplified knee models that exclude potentially important stabilizing knee components. The effect of these stabilizing components in pedestrian impacts is currently unknown. The goal of this study was to develop a detailed lower-extremity model to investigate the effect of these stabilizing components on pedestrian biomechanics. In this study the Global Human Body Model Consortium male 50th percentile pedestrian model lower body was updated to include various stabilizing knee components, enhance geometric anatomical accuracy of previously modeled soft tissue structures, and update hard and soft tissue material models. The original and updated models were compared across 13 validation tests and the updated model reported significantly (p = 0.01) larger CORA scores (0.73 ± 0.15) than the original model (0.56 ± 0.20). To investigate the effect of the new stabilizing knee components the updated model had its stabilizing components severed. The severed and intact models were impacted by the EuroNCAP SUV and family car models at 30 and 40 km/h. The intact and severed models reported nearly identical head impact times, wrap around distances, and lower-extremity injury outcomes in all four impacts, but the stabilizing components reduced the varus knee angle of the secondarily impacted leg by up to 4.9°. The stabilizing components may prevent secondary impacted leg injuries in lower intensity impacts but overall had little effect on pedestrian biomechanical outcomes.


Subject(s)
Leg Injuries , Pedestrians , Accidents, Traffic , Biomechanical Phenomena , Finite Element Analysis , Humans , Lower Extremity , Male , Walking
2.
J Biomech Eng ; 143(1)2021 01 01.
Article in English | MEDLINE | ID: mdl-33030214

ABSTRACT

Injury due to underbody loading is increasingly relevant to the safety of the modern warfighter. To accurately evaluate injury risk in this loading modality, a biofidelic anthropomorphic test device (e.g., dummy) is required. Finite element model counterparts to the physical dummies are also useful tools in the evaluation of injury risk, but require validated constitutive material models used in the dummy. However, material model fitting can result in models that are over-fit: they match well with the data they were trained on, but do not extrapolate well to new loading scenarios. In this study, we used a hierarchical approach. Material models created from coupon-level tests were evaluated at the component level, and then verified using blinded component and whole body (WB) tests to establish a material model of the anthropomorphic test device (ATD) neck that was not over-fit. Additionally, a combined metric is introduced that incorporates the well-known correlation analysis (CORA) score with peak characteristics to holistically evaluate the material model performance. A Bergstrom Boyce material model fit to one loop of combined compression and tension experimental data performed the best within the training datasets. Its combined metric scores were 2.51 and 2.18 (max score of 3) in a constrained neck and head neck setup, respectively. In the blinded evaluation including flexed, extended, and WB simulations, similar combined scores were observed with 2.44, 2.26, and 2.60, respectively. The agreement between the combined scores in the training and validation dataset indicated that model was not over-fit and can be extrapolated into untested, but similar loading scenarios.


Subject(s)
Finite Element Analysis , Explosions , Head , Neck
3.
J Biomech ; 41(7): 1545-54, 2008.
Article in English | MEDLINE | ID: mdl-18384793

ABSTRACT

The aim of this study is to quantify patterns of age-related shape change in the human thorax using Procrustes superimposition. Landmarks (n=106) selected from anonymized computed tomography (CT) scans of 63 adult males free of skeletal pathology were used to describe the form of the rib cage. Multivariate linear regression was used to determine a relationship between landmark location and age. Linear and quadratic models were also investigated. A permutation test employing 1 x 10(5) random trials was used to assess the model significance for both model formulations. Linear relationships between the centroid size (CS) of a landmark set and the corresponding individual's height, weight, and BMI were conducted to enable scaling of the dimensionless results from the Procrustes analysis. A significance level of alpha=0.05 was used for all tests. The average age of the study subjects was 57.0+/-17.3 years. Complete landmark sets were obtained from most of the scans (44 of 63). The quadratic relationship between the age and landmark location was found to be significant (p=0.037), thereby establishing a relationship between the age and thoracic shape change. The linear relationship was mildly significant as well (p=0.073). Significant relationships between the centroid size of the dataset and subject weight, height and BMI were determined, with the best-correlated value being weight (p=0.002, R(2)=0.22). Landmark datasets calculated using the quadratic model exhibited shape change consistent with the clinical observations (increasing kyphosis and rounding of the thoracic cage). Procrustes superimposition represents a potential improvement in the approach used to generate computational models for injury biomechanics studies. The coefficients from the quadratic model are provided and can be used to generate the complete set of model landmark data points at a given age.


Subject(s)
Aging/physiology , Imaging, Three-Dimensional , Models, Biological , Thorax/physiology , Tomography, X-Ray Computed , Adult , Aged , Humans , Imaging, Three-Dimensional/methods , Male , Middle Aged , Radiography, Thoracic/methods , Thorax/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...