Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 25(42): 29127-29134, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37869878

ABSTRACT

This work investigates how configurational entropy in oxides could affect proton conductivity. For this purpose, three samples of different elemental compositions are synthesized. Five, six and seven elements were introduced into the A-site of ANbO4, forming La1/5 Nd1/5 Sm1/5Gd1/5 Eu1/5NbO4, La1/6Nd1/6Sm1/6Gd1/6Eu1/6Ho1/6NbO4 and La1/7Nd1/7Sm1/7Gd1/7Eu1/7Ho1/7Er1/7NbO4, respectively. The high configuration disorder changes the local environment, which can have a notable effect on many properties, including proton transport, which is the focus of this work. The conductivity was measured in different atmospheres; dry and wet and in a different temperature range (600-800 °C) to compare the proton transport as well as study the effect of temperature. A homogenous single-phase monoclinic fergusonite was obtained for the three samples. Proton conductivity, measured by means of comparing the conductivity in dry and wet atmospheres, was observed in all samples. La1/5 Nd1/5 Sm1/5Gd1/5 Eu1/5NbO4 exhibited the highest conductivity, about 3.0 × 10-6 S cm-1 at 800 °C in the wet atmosphere, while in the dry atmosphere it was about 2.2 × 10-6 S cm-1 at the same temperature, which implies a modest proton conductivity in this class of materials.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123048, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37354860

ABSTRACT

Detection of incompatibility between an active pharmaceutical ingredient (API) and excipients, including the selection of the most biopharmaceutical advantageous excipients is extremely important in the pre-formulation process of developing a solid dosage form technology. Therefore, having fast and reliable methods for identifying incompatibility is fundamental in pharmaceutical technology. For this purpose, combined Fourier transform infrared (FTIR) and Raman spectroscopy as well as high-temperature X-ray diffraction (HT-XRD) were used as a new approach for incompatibility detection, whereas differential scanning calorimetry (DSC) was applied as a reference method. In addition, to facilitate the interpretation of FTIR and Raman data, a multivariate analysis was used - hierarchical cluster analysis (HCA). The tests were carried out in mixtures of naproxen (NPX) with eight selected polymer excipients, mixed at a 1:1 ratio. The results of spectroscopic analyses have shown the physical incompatibility of NPX with methylcellulose (MC), hydroxypropylmethylcellulose (HPMC), hydroxyethylcellulose (HEC), sodium starch glycolate (SSG) and sodium carboxymethylcellulose (CMC). HT-XRD studies performed when these mixtures were heated to 156 °C and then cooled to 25 °C showed a decrease in naproxen crystallinity in these mixtures. Furthermore, the results obtained with spectroscopic methods were confirmed by DSC tests and an intrinsic dissolution rate study.


Subject(s)
Excipients , Naproxen , Excipients/chemistry , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis, Raman , Chemistry, Pharmaceutical/methods , Calorimetry, Differential Scanning , Solubility
3.
Dalton Trans ; 52(17): 5771-5779, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37038971

ABSTRACT

This study concerns energetics of formation and the stability in high water partial pressure of BaLnCo2O6-δ, (Ln = La, Pr, Nd, and Gd) (BLnC) and BaGd1-xLaxCo2O6-δ, where x = 0.2, 0.5, and 0.7 (BGLC) double perovskite cobaltites. Those materials are extensively studied due to their potential applications as a positrode in electrochemical devices. Therefore, their stability under such conditions is a key issue. All investigated materials are thermodynamically stable relative to binary oxides and exhibit strongly exothermic enthalpies of formation. Moreover, BaGd0.3La0.7Co2O6-δ and BaGd0.8La0.2Co2O6-δ remain the main perovskite structure up to 3 bars of water vapor at 400 °C. At higher steam pressure, reaching 10 bar at 300 °C, the partial decomposition to constituent oxides and hydroxides was observed. The BGLC compounds exhibit higher negative formation enthalpies in comparison to single-Ln compositions, which does not translate into higher chemical stability under high steam pressures since the BLnC series retained the main perovskite structure at higher temperatures as well as in higher water vapor pressures.

4.
Small ; 19(26): e2208265, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36949366

ABSTRACT

Polycrystalline boron-doped diamond is a promising material for high-power aqueous electrochemical applications in bioanalytics, catalysis, and energy storage. The chemical vapor deposition (CVD) process of diamond formation and doping is totally diversified by using high kinetic energies of deuterium substituting habitually applied hydrogen. The high concentration of deuterium in plasma induces atomic arrangements and steric hindrance during synthesis reactions, which in consequence leads to a preferential (111) texture and more effective boron incorporation into the lattice, reaching a one order of magnitude higher density of charge carriers. This provides the surface reconstruction impacting surficial populations of CC dimers, CH, CO groups, and COOH termination along with enhanced kinetics of their abstraction, as revealed by high-resolution core-level spectroscopies. A series of local densities of states were computed, showing a rich set of highly occupied and localized surface states for samples deposited in deuterium, negating the connotations of band bending. The introduction of enhanced incorporation of boron into (111) facet of diamond leads to the manifestation of surface electronic states below the Fermi level and above the bulk valence band edge. This unique electronic band structure affects the charge transfer kinetics, electron affinity, and diffusion field geometry critical for efficient electrolysis, electrocatalysis, and photoelectrochemistry.

5.
Phys Chem Chem Phys ; 25(13): 9208-9215, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36919378

ABSTRACT

A group of multi-component oxides based on BaZrO3 have been prepared using a solid-state reaction method and examined in terms of their water uptake and thermodynamics of formation. Depending on the type and amount of acceptor substitution, the synthesized compounds exhibit various proton defect concentrations, reaching up to 0.2 mol/mol for a compound containing 10 different elements in the B-sublattice, where 50% of them are acceptors. For the most promising materials, van't Hoff plots were created and the enthalpies and entropies of hydration were calculated. At higher temperatures, these parameters do not differ from the values for the reference yttrium doped barium zirconate. However, at lower temperatures they are more negative, indicating a more exothermic process of proton incorporation.

6.
Chemphyschem ; 24(1): e202200368, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36253100

ABSTRACT

LaNb0.8 M0.2 O4-δ (where M=As, Sb, V, and Ta) oxides with pentavalent elements of different ionic sizes were synthesized by a solid-state reaction method. The vibrational properties of these oxides have been investigated. These studies revealed that the substituent element influences both Debye temperature value as well as the Raman active vibrational modes. Additionally, the low-temperature vibrational properties of LaNb0.8 Sb0.2 O4-δ have been determined to show the phase transition occurrence at 260 K which is lower than previously reported.


Subject(s)
Oxides , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Temperature , Phase Transition , Oxides/chemistry , Cold Temperature
7.
Int J Mol Sci ; 23(19)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36233346

ABSTRACT

Since the formation of organic salts can improve the solubility, bioavailability, and stability of active pharmaceutical ingredients, the aim of this work was to prepare an organic salt of chlordiazepoxide with saccharin. To achieve this goal, the saccharin salt of chlordiazepoxide was obtained from a physical mixture of both components by grinding them with a small volume of solvent and by crystallizing them with complete evaporation of the solvent. The resulting salt was examined by methods such as Powder X-ray Diffraction (PXRD), Single Crystal X-ray Diffraction (SCXRD), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Fourier Transform Infrared (FT-IR), and Raman spectroscopy. The results of the studies proved that saccharin salt of chlordiazepoxide crystallizes in the orthorhombic Pbca space group with one chlordiazepoxide cation and one saccharin anion in the asymmetric unit. In the crystal of the title compound, the chlordiazepoxide cation and the saccharin anion interact through strong N-H···O hydrogen bonds and weak C-H···O hydrogen bonds. The disappearance of the N-H band in the FT-IR spectrum of saccharin may indicate a shift of this proton towards chlordiazepoxide, while the disappearance of the aromatic bond band in the chlordiazepoxide ring in the Raman spectrum may suggest the formation of intermolecular hydrogen bonds between chlordiazepoxide molecules. The melting point of the salts differs from that of the starting compounds. Thermal decomposition of the salt begins above 200 °C and shows at least two overlapping stages of mass loss. In summary, the results of the research showed that the crystalline salt of the saccharin and chlordiazepoxide can be obtained by various methods: grinding with the addition of acetonitrile and crystallization from acetonitrile or a mixture of methanol with methylene chloride.


Subject(s)
Chlordiazepoxide , Saccharin , Acetonitriles , Calorimetry, Differential Scanning , Methanol , Methylene Chloride , Powders , Protons , Salts/chemistry , Solubility , Solvents , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
8.
Nanomaterials (Basel) ; 12(7)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35407296

ABSTRACT

Magnetization reversal processes in the NiFe/FeMn exchange biased structures with various antiferromagnetic layer thicknesses (0-50 nm) and glass substrate temperatures (17-600 °C) during deposition were investigated in detail. Magnetic measurements were performed in the temperature range from 80 K up to 300 K. Hysteresis loop asymmetry was found at temperatures lower than 150 K for the samples with an antiferromagnetic layer thickness of more than 10 nm. The average grain size of FeMn was found to increase with the AFM layer increase, and to decrease with the substrate temperature increase. Hysteresis loop asymmetry was explained in terms of the exchange spring model in the antiferromagnetic layer.

9.
Materials (Basel) ; 15(6)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35329720

ABSTRACT

In this paper, the structural properties and the electrical conductivity of La1-xPrxNbO4+δ (x = 0.00, 0.05, 0.1, 0.15, 0.2, 0.3) and PrNbO4+δ are presented and discussed. All synthesized samples crystallized in a monoclinic structure with similar thermal expansion coefficients. The phase transition temperature between the monoclinic and tetragonal structure increases with increasing praseodymium content from 500 °C for undoped LaNbO4+δ to 700 °C for PrNbO4+δ. Thermogravimetry, along with X-ray photoelectron spectroscopy, confirmed a mixed 3+/4+ oxidation state of praseodymium. All studied materials, in humid air, exhibited mixed protonic, oxygen ionic and hole conductivity. The highest total conductivity was measured in dry air at 700 °C for PrNbO4+δ, and its value was 1.4 × 10-3 S/cm.

10.
Nanomaterials (Basel) ; 12(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35159756

ABSTRACT

In this work, we present the characterization and electrochemical performance of various ternary silicon oxycarbide/graphite/tin (SiOC/C/Sn) nanocomposites as anodes for lithium-ion batteries. In binary SiOC/Sn composites, tin nanoparticles may be produced in situ via carbothermal reduction of SnO2 to metallic Sn, which consumes free carbon from the SiOC ceramic phase, thereby limiting the carbon content in the final ceramic nanocomposite. Therefore, to avoid drawbacks with carbon depletion, we used graphite as a substitute during the synthesis of precursors. The ternary composites were synthesized from liquid precursors and flake graphite using the ultrasound-assisted hydrosilylation method and pyrolysis at 1000 °C in an Ar atmosphere. The role of the graphitic component is to ensure good electric conductivity and the softness of the material, which are crucial for long term stability during alloying-dealloying processes. The presented approach allows us to increase the content of the tin precursor from 40 wt.% to 60 wt.% without losing the electrochemical stability of the final material. The charge/discharge capacity (at 372 mA g-1 current rate) of the tailored SiOC/C/Sn composite is about 100 mAh g-1 higher compared with that of the binary SiOC/Sn composite. The ternary composites, however, are more sensitive to high current rates (above 372 mA g-1) compared to the binary one because of the presence of graphitic carbon.

11.
Materials (Basel) ; 14(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34885290

ABSTRACT

Prior studies of the thin film deposition of the metal-organic compound of Fe(pz)Pt[CN]4 (pz = pyrazine) using the matrix-assisted pulsed laser evaporation (MAPLE) method, provided evidence for laser-induced decomposition of the molecular structure resulting in a significant downshift of the spin transition temperature. In this work we report new results obtained with a tunable pulsed laser, adjusted to water resonance absorption band with a maximum at 3080 nm, instead of 1064 nm laser, to overcome limitations related to laser-target interactions. Using this approach, we obtain uniform and functional thin films of Fe(pz)Pt[CN]4 nanoparticles with an average thickness of 135 nm on Si and/or glass substrates. X-ray diffraction measurements show the crystalline structure of the film identical to that of the reference material. The temperature-dependent Raman spectroscopy indicates the spin transition in the temperature range of 275 to 290 K with 15 ± 3 K hysteresis. This result is confirmed by UV-Vis spectroscopy revealing an absorption band shift from 492 to 550 nm related to metal-to-ligand-charge-transfer (MLCT) for high and low spin states, respectively. Spin crossover is also observed with X-ray absorption spectroscopy, but due to soft X-ray-induced excited spin state trapping (SOXIESST) the transition is not complete and shifted towards lower temperatures.

12.
AAPS PharmSciTech ; 23(1): 3, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34799781

ABSTRACT

An important challenge to overcome in the solid dosage forms technology is the selection of the most biopharmaceutically efficient polymeric excipients. The excipients can be selected, among others, by compatibility studies since incompatibilities between ingredients of the drug formulations adversely affect their bioavailability, stability, efficacy, and safety. Therefore, new, fast, and reliable methods for detecting incompatibility are constantly being sought. Hence, the purpose of this work was to assess the usefulness of a heating, cooling, and reheating differential scanning calorimetry (DSC) program for detecting potential incompatibilities between atenolol, an active pharmaceutical ingredient (API), and polymeric excipients. Hot-stage microscopy (HSM), Fourier transform infrared (FTIR) spectroscopy, and powder X-ray diffraction (PXRD) were used as supporting techniques. Additionally, principal component analysis (PCA) and hierarchical cluster analysis (HCA) served as tools to support the interpretation of the data acquired from the DSC curves and FTIR spectra. As the alterations in the shape of the DSC peak of atenolol which are indicative of incompatibility are visible only on the cooling and reheating curves of the mixtures, the DSC heating-cooling-reheating program was found to be very useful for identifying potential incompatibilities in the binary mixtures of atenolol and polymeric excipients. The melting and recrystallization of atenolol alone and in its mixtures were also confirmed by HSM, while FTIR displayed changes in the spectra of mixtures due to incompatibility. These studies revealed that atenolol is incompatible with hydroxyethylcellulose, hypromellose, and methylcellulose. PXRD measurements at room temperature revealed that the crystallinity of atenolol did not change in these mixtures. However, its crystallinity was reduced in the mixtures previously heated up to 155 °C and then cooled to 25 °C.


Subject(s)
Atenolol , Excipients , Calorimetry, Differential Scanning , Cluster Analysis , Principal Component Analysis , Spectroscopy, Fourier Transform Infrared
13.
Materials (Basel) ; 14(16)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34443180

ABSTRACT

Ba0.5La0.5Co0.5Fe0.5O3-δ was synthesized in the solid-state reaction route. The influence of ball milling parameters (such as milling media size, angular velocity, and time), pelletizing pressure, and annealing parameters on the microstructure was studied. The grain size distribution and density or specific surface area changes were investigated in each approach while the individual parameters were changed. The evaluation of BLCF synthesis parameters enables tailoring the microstructure to various applications. It was observed that with lowering the size of milling balls and increasing the angular velocity the material will be porous and thus more appropriate as electrode material in proton ceramic fuel cell or electrolyzer. An increase of time, balls diameter, and/or angular velocity of milling enables one to densify the material in case of membrane application in, e.g., as a gas sensor. The significant influence on densification has also annealing temperature increase. Applying 1200 °C during annealing leads to dense material, while at 1100 °C shows visible porosity of the product. In this work, we present the results of the BLCF synthesis parameters change allowing the selection of appropriate parameter values depending on the further application as PCCs.

14.
J Hazard Mater ; 418: 126286, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34098262

ABSTRACT

A novel, bio-derived cyclodextrin-based trifunctional adsorbent has been successfully synthesized for efficient, rapid and simultaneous removal of a broad-spectrum of toxic ionic (anionic and cationic dyes) and non-ionic organic pollutants from water. The composition, morphology and the presence of functional groups in the obtained sorption material were characterized by elemental analysis, XRD, SEM, and FTIR spectroscopy. The adsorption results were represented by cationic dye (crystal violet, CV) and endocrine disrupting compound (bisphenol A, BPA) as an adsorbate. The sorption processes of the model pollutants were studied with both kinetic and equilibrium models. The results showed that the sorption was rapid (less than 1 min) and the time evolution could be fitted using a pseudo-second order model. According to Langmuir isotherm model, the maximum adsorption capacities were found at 113.64 and 43.10 mg g-1 for BPA and CV, respectively. The adsorption ability of ß-CDPs was kept nearly on the same level after five regeneration cycles. Furthermore, almost complete removal of the pollutants was observed during the treatment of real effluents samples thus the bio-derived, cheap and reusable BAN-EPI-CDP has a promising potential for practical applications.


Subject(s)
Cyclodextrins , Environmental Pollutants , Water Pollutants, Chemical , beta-Cyclodextrins , Cations , Cellulose , Polymers , Water , Water Pollutants, Chemical/analysis
15.
Materials (Basel) ; 14(5)2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33804496

ABSTRACT

Tin oxide is one of the most promising electrode materials as a negative electrode for lithium-ion batteries due to its higher theoretical specific capacity than graphite. However, it suffers lack of stability due to volume changes and low electrical conductivity while cycling. To overcome these issues, a new composite consisting of SnO2 and carbonaceous matrix was fabricated. Naturally abundant and renewable chitosan was chosen as a carbon source. The electrode material exhibiting 467 mAh g-1 at the current density of 18 mA g-1 and a capacity fade of only 2% after 70 cycles is a potential candidate for graphite replacement. Such good electrochemical performance is due to strong interaction between amine groups from chitosan and surface hydroxyl groups of SnO2 at the preparation stage. However, the charge storage is mainly contributed by a diffusion-controlled process showing that the best results might be obtained for low current rates.

16.
Materials (Basel) ; 14(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808648

ABSTRACT

Doping and modification of TiO2 nanotubes were carried out using the hydrothermal method. The introduction of small amounts of cobalt (0.1 at %) into the structure of anatase caused an increase in the absorption of light in the visible spectrum, changes in the position of the flat band potential, a decrease in the threshold potential of water oxidation in the dark, and a significant increase in the anode photocurrent. The material was characterized by the SEM, EDX, and XRD methods, Raman spectroscopy, XPS, and UV-Vis reflectance measurements. Electrochemical measurement was used along with a number of electrochemical methods: chronoamperometry, electrochemical impedance spectroscopy, cyclic voltammetry, and linear sweep voltammetry in dark conditions and under solar light illumination. Improved photoelectrocatalytic activity of cobalt-doped TiO2 nanotubes is achieved mainly due to its regular nanostructure and real surface area increase, as well as improved visible light absorption for an appropriate dopant concentration.

17.
Chemistry ; 27(17): 5393-5398, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33491808

ABSTRACT

Lanthanum orthoantimonate was synthesized using a solid-state synthesis method. To enhance the possible protonic conductivity, samples with the addition of 1 mol % Ca in La-site were also prepared. The structure was studied by the means of X-ray diffraction, which showed that both specimens were single phase. The materials crystallized in the space group P21 /n. Dilatometry revealed that the material expanded non-linearly with the temperature. The nature of this deviation is unknown; however, the calculated linear fraction thermal expansion coefficient was 9.56×10-6 K-1 . Electrical properties studies showed that the material is a proton conductor in oxidizing conditions, which was confirmed both by temperature studies in wet in dry air, but also by the H/D isotope exchange experiment. The conductivity was rather modest, peaking at the order of 10-6  S cm-1 at 800 °C, but this could be further improved by microstructure and doping optimization. This is the first time protonic conductivity in lanthanum orthoantimonates is reported.

18.
Materials (Basel) ; 13(18)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32933063

ABSTRACT

The application of double perovskite cobaltites BaLnCo2O6-δ (Ln = lanthanide element) in electrochemical devices for energy conversion requires control of their properties at operating conditions. This work presents a study of a series of BaLnCo2O6-δ (Ln = La, Pr, Nd) with a focus on the evolution of structural and electrical properties with temperature. Symmetry, oxygen non-stoichiometry, and cobalt valence state have been examined by means of Synchrotron Radiation Powder X-ray Diffraction (SR-PXD), thermogravimetry (TG), and X-ray Absorption Spectroscopy (XAS). The results indicate that all three compositions maintain mainly orthorhombic structure from RT to 1000 °C. Chemical expansion from Co reduction and formation of oxygen vacancies is observed and characterized above 350 °C. Following XAS experiments, the high spin of Co was ascertained in the whole range of temperatures for BLC, BPC, and BNC.

19.
Dalton Trans ; 49(31): 10839-10850, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32705110

ABSTRACT

The defect fluorite yttrium niobate Y3NbO7 and pyrochlore yttrium titanate Y2Ti2O7 solid solutions have been synthesized via a solid state synthesis route. The resulting stoichiometry of the oxides is Y2+xTi2-2xNbxO7, where x = 0 to x = 1. All of the samples were single-phase; however, for those with a predominant fluorite phase, a small amount of additional pyrochlore phase was detected. The volume of the solid solution unit cells linearly increases with increase in yttrium niobate content. The water uptake increases with (x) and the protonic defect concentration reaches almost 4.5 × 10-3 mol mol-1 at 300 °C. The calculated enthalpy of formation from oxides suggests strong stability for all of the compositions, with the values of enthalpy ranging from -84.6 to -114.3 kJ mol-1. The total conductivity does not have a visible dependence on Y3NbO7 content. For each compound, the total conductivity is higher in wet air. Interestingly, for samples where x < 0.5, the ratio of conductivity in hydrogen to air increases with increasing temperature, while for x > 0.5, the trend is the opposite.

20.
Materials (Basel) ; 13(6)2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32192186

ABSTRACT

Thin layers of bismuth vanadate were deposited using the pulsed laser deposition technique on commercially available FTO (fluorine-doped tin oxide) substrates. Films were sputtered from a sintered, monoclinic BiVO4 pellet, acting as the target, under various oxygen pressures (from 0.1 to 2 mbar), while the laser beam was perpendicular to the target surface and parallel to the FTO substrate. The oxygen pressure strongly affects the morphology and the composition of films observed as a Bi:V ratio gradient along the layer deposited on the substrate. Despite BiVO4, two other phases were detected using XRD (X-ray diffraction) and Raman spectroscopy-V2O5 and Bi4V2O11. The V-rich region of the samples deposited under low and intermediate oxygen pressures was covered by V2O5 longitudinal structures protruding from BiVO4 film. Higher oxygen pressure leads to the formation of Bi4V2O11@BiVO4 bulk heterojunction. The presented results suggest that the ablation of the target leads to the plasma formation, where Bi and V containing ions can be spatially separated due to the interactions with oxygen molecules. In order to study the phenomenon more thoroughly, laser-induced breakdown spectroscopy measurements were performed. Then, obtained electrodes were used as photoanodes for photoelectrochemical water splitting. The highest photocurrent was achieved for films deposited under 1 mbar O2 pressure and reached 1 mA cm-2 at about 0.8 V vs Ag/AgCl (3 M KCl). It was shown that V2O5 on the top of BiVO4 decreases its photoactivity, while the presence of a bulk Bi4V2O11@BiVO4 heterojunction is beneficial in water photooxidation.

SELECTION OF CITATIONS
SEARCH DETAIL
...