Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Genes (Basel) ; 15(1)2024 01 18.
Article in English | MEDLINE | ID: mdl-38255007

ABSTRACT

Richard Peto's paradox, first described in 1975 from an epidemiological perspective, established an inverse correlation between the probability of developing cancer in multicellular organisms and the number of cells. Larger animals exhibit fewer tumors compared to smaller ones, though exceptions exist. Mice are more susceptible to cancer than humans, while elephants and whales demonstrate significantly lower cancer prevalence rates than humans. How nature and evolution have addressed the issue of cancer in the animal kingdom remains largely unexplored. In the field of medicine, much attention has been devoted to cancer-predisposing genes, as they offer avenues for intervention, including blocking, downregulating, early diagnosis, and targeted treatment. Predisposing genes also tend to manifest clinically earlier and more aggressively, making them easier to identify. However, despite significant strides in modern medicine, the role of protective genes lags behind. Identifying genes with a mild predisposing effect poses a significant challenge. Consequently, comprehending the protective function conferred by genes becomes even more elusive, and their very existence is subject to questioning. While the role of variable expressivity and penetrance defects of the same variant in a family is well-documented for many hereditary cancer syndromes, attempts to delineate the function of protective/modifier alleles have been restricted to a few instances. In this review, we endeavor to elucidate the role of protective genes observed in the animal kingdom, within certain genetic syndromes that appear to act as cancer-resistant/repressor alleles. Additionally, we explore the role of protective alleles in conditions predisposing to cancer. The ultimate goal is to discern why individuals, like Winston Churchill, managed to live up to 91 years of age, despite engaging in minimal physical activity, consuming large quantities of alcohol daily, and not abstaining from smoking.


Subject(s)
Elephants , Medicine , Neoplastic Syndromes, Hereditary , Humans , Animals , Mice , Elephants/genetics , Alleles , Cetacea
3.
Int J Mol Sci ; 25(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38203665

ABSTRACT

We describe the complex case of a 44-year-old man with polycystic kidney disease, mild cognitive impairment, and tremors in the upper limbs. Brain MRI showed lesions compatible with leukodystrophy. The diagnostic process, which included clinical exome sequencing (CES) and chromosomal microarray analysis (CMA), revealed a triple diagnosis: autosomal dominant polycystic kidney disease (ADPKD) due to a pathogenic variant, c.2152C>T-p.(Gln718Ter), in the PKD1 gene; late-onset phenylketonuria due to the presence of two missense variants, c.842C>T-p.(Pro281Leu) and c.143T>C-p.(Leu48Ser) in the PAH gene; and a 915 Kb duplication on chromosome 15. Few patients with multiple concurrent genetic diagnoses are reported in the literature; in this ADPKD patient, genome-wide analysis allowed for the diagnosis of adult-onset phenylketonuria (which would have otherwise gone unnoticed) and a 15q11.2 duplication responsible for cognitive and behavioral impairment with incomplete penetrance. This case underlines the importance of clinical genetics for interpreting complex results obtained by genome-wide techniques, and for diagnosing concurrent late-onset monogenic conditions.


Subject(s)
Cognitive Dysfunction , Demyelinating Diseases , Intellectual Disability , Lipid Metabolism Disorders , Lysosomal Storage Diseases , Neurodegenerative Diseases , Phenylketonurias , Polycystic Kidney, Autosomal Dominant , Adult , Male , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Chromosomes, Human, Pair 15 , Late Onset Disorders
SELECTION OF CITATIONS
SEARCH DETAIL
...