Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Molecules ; 28(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37894540

ABSTRACT

It is shown that the presence of hundreds of ppm of water in 1,3-dimethylurea (DMU) powder led to the large depression of the transition temperature between the two enantiotropically related polymorphic forms of DMU (Form II → Form I) from 58 °C to 25 °C, thus explaining the reported discrepancies on this temperature of transition. Importantly, this case study shows that thermodynamics (through the construction of the DMU-water temperature-composition phase diagram) rather than kinetics is responsible for this significant temperature drop. Furthermore, this work also highlights the existence of a monohydrate of DMU that has never been reported before with a non-congruent fusion at 8 °C. Interestingly, its crystal structure, determined from X-ray powder diffraction data at sub-ambient temperature, consists of a DMU-water hydrogen bonded network totally excluding homo-molecular hydrogen bonds (whereas present in forms I and II of DMU).

2.
Int J Pharm ; 580: 119230, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32199962

ABSTRACT

Pyrazinamide is an active pharmaceutical compound for the treatment of tuberculosis. It possesses at least four crystalline polymorphs. Polymorphism may cause solubility problems as the case of ritonavir has clearly demonstrated; however, polymorphs also provide opportunities to improve pharmaceutical formulations, in particular if the stable form is not very soluble. The four polymorphs of pyrazinamide constitute a rich system to investigate the usefulness of metastable forms and their stabilization. However, despite the existence of a number of papers on the polymorphism of pyrazinamide, well-defined equilibrium conditions between the polymorphs appear to be lacking. The main objectives of this paper are to establish the temperature and pressure equilibrium conditions between the so-called α and γ polymorphs of pyrazinamide, its liquid phase, and vapor phase and to determine the phase-change inequalities, such as enthalpies, entropies, and volume differences. The equilibrium temperature between α and γ was experimentally found at 392(1) K. Moreover, vapor pressures and solubilities of both phases have been determined, clearly indicating that form α is the more stable form at room temperature. High-pressure thermal analysis and the topological pressure-temperature phase diagram demonstrate that the γ form is stabilized by pressure and becomes stable at room temperature under a pressure of 260 MPa.


Subject(s)
Pyrazinamide/chemistry , Crystallization/methods , Drug Stability , Phase Transition , Pressure , Ritonavir/chemistry , Temperature , Thermodynamics
3.
Chem Phys Lett ; 630: 12-17, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-31007269

ABSTRACT

The origins of specific polymorphic phases within thin films are still not well understood. The polymorphism of the molecule dioctyl-terthiophene is investigated during the presence of a silicon-oxide surface during the crystallisation process. It is found that a monolayer of molecules forms two-dimensional crystals on the surface. In the case of thicker films crystalline islands are formed, a comparison of the three polymorphic phases observed within thin films and the thermodynamically more stable single crystal phases reveals distinct differences which can be related to an adaption of the molecular packing with the flat surface of the substrate.

4.
ACS Appl Mater Interfaces ; 6(16): 13413-21, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-25083814

ABSTRACT

A detailed structural study of the bulk and thin film phases observed for two potential high-performance organic semiconductors has been carried out. The molecules are based on [1]benzothieno[3,2-b]benzothiophene (BTBT) as conjugated core and octyl side groups, which are anchored either symmetrically at both sides of the BTBT core (C8-BTBT-C8) or nonsymmetrically at one side only (C8-BTBT). Thin films of different thickness (8-85 nm) have been prepared by spin-coating for both systems and analyzed by combining specular and grazing incidence X-ray diffraction. In the case of C8-BTBT-C8, the known crystal structure obtained from single-crystal investigations is observed within all thin films, down to a film thickness of 9 nm. In the case of C8-BTBT, the crystal structure of the bulk phase has been determined from X-ray powder diffraction data with a consistent matching of experimental and calculated X-ray diffraction patterns (Rwp = 5.8%). The packing arrangement of C8-BTBT is similar to that of C8-BTBT-C8, that is, consisting of a lamellar structure with molecules arranged in a "herringbone" fashion, yet with lamellae composed of two head-to-head (or tail-to-tail as the structure is periodic) superimposed molecules instead of only one molecule for C8-BTBT-C8. As for C8-BTBT-C8, we demonstrate that the same phase is observed in bulk and thin films for C8-BTBT whatever the film thickness investigated.

5.
Materials (Basel) ; 6(7): 3022-3034, 2013 Jul 22.
Article in English | MEDLINE | ID: mdl-28811420

ABSTRACT

A previously reported diketopyrrolopyrrole (DPP)-phenyl copolymer is modified by adding methoxy or octyloxy side chains on the phenyl spacer. The influence of these alkoxy substitutions on the physical, opto-electronic properties, and photovoltaic performance were investigated. It was found that the altered physical properties correlated with an increase in chain flexibility. Well-defined oligomers were synthesized to verify the observed structure-property relationship. Surprisingly, methoxy substitution on the benzene spacer resulted in higher melting and crystallization temperatures in the synthesized oligomers. This trend is not observed in the polymers, where the improved interactions are most likely counteracted by the larger conformational possibilities in the polymer chain upon alkoxy substitution. The best photovoltaic performance was obtained for the parent polymer: fullerene blends whereas the modifications on the other two polymers result in reduced open-circuit voltage and varying current densities under similar processing conditions. The current densities could be related to different polymer: fullerene blend morphologies. These results show that supposed small structural alterations such as methoxy substitution already significantly altered the physical properties of the parent polymer and also that oligomers and polymers respond divergent to structural alterations made on a parent structure.

6.
Langmuir ; 28(22): 8530-6, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22578151

ABSTRACT

Temperature dependent structural and morphological investigations on semiconducting dioctyl-terthiophene (DOTT) thin films prepared on silica surfaces reveals the coexistence of surface induce order and distinct crystalline/liquid crystalline bulk polymorphs. X-ray diffraction and scanning force microscopy measurements indicate that at room temperature two polymorphs are present: the surface induced phase grows directly on the silica interface and the bulk phase on top. At elevated temperatures the long-range order gradually decreases, and the crystal G (340 K), smectic F (348 K), and smectic C (360 K) phases are observed. Indexation of diffraction peaks reveals that an up-right standing conformation of DOTT molecules is present within all phases. A temperature stable interfacial layer close to the silica-DOTT interface acts as template for the formation of the different phases. Rapid cooling of the DOTT sample from the smectic C phase to room temperature results in freezing into a metastable crystalline state with an intermediated unit cell between the room temperature crystalline phase and the smectic C phase. The understanding of such interfacial induced phases in thin semiconducting liquid crystal films allows tuning of crystallographic and therefore physical properties within organic thin films.


Subject(s)
Liquid Crystals/chemistry , Silicon Dioxide/chemistry , Thiophenes/chemistry , Calorimetry, Differential Scanning , Crystallization , Crystallography, X-Ray , Microscopy, Atomic Force , Molecular Conformation , Phase Transition , Semiconductors , Surface Properties , Temperature , Thermodynamics
7.
Adv Mater ; 24(5): 658-62, 2012 Feb 02.
Article in English | MEDLINE | ID: mdl-22174161

ABSTRACT

A new phase of a known discotic liquid crystal is observed at the interface with a rigid substrate. The structure of the substrate-induced phase has been characterized by atomic force microscopy, specular X-ray diffraction, and small-angle and wide-angle grazing incidence X-ray diffraction. The substrate-induced phase, which has a thickness of ∼30 nm and a tetragonal symmetry, differs notably from the bulk phase. The occurrence of such phase casts a new light on alignment of discotic liquid crystals.


Subject(s)
Liquid Crystals/chemistry , Plastics/chemistry , Microscopy, Atomic Force , Phase Transition , Scattering, Small Angle , X-Ray Diffraction
8.
Chemistry ; 15(47): 13141-9, 2009 Dec 07.
Article in English | MEDLINE | ID: mdl-19862782

ABSTRACT

Structural knowledge of the high-temperature phases of saturated carboxylic acids (C(n)H(2n-1)O(2)H) from C(6)H(11)O(2)H to C(23)H(45)O(2)H is now complete. Crystal structures of the high-temperature phases of even acids from decanoic (C(10)H(19)O(2)H) to eicosanoic (C(20)H(39)O(2)H) are reported. The crystal structures of the six compounds were determined from powder X-ray diffraction data following direct space methods and refined by the Rietveld method combined with force field geometry optimization. The combination proved to be a valuable approach to obtain structures that are chemically sensible and in close agreement with the powder pattern. At the end of the process solid-state DFT calculations were applied to improve the overall accuracy of the system but in this case DFT did not render better structures. The high-temperature solid phases of even carboxylic acids are all P2(1)/c with Z=4, the molecules are united into dimers via strong hydrogen bonds. Two major types of interactions govern the crystal packing of carboxylic acids, hydrogen bonds and van der Waals interactions. A survey of the intermolecular interactions has revealed that hydrogen bonds are the dominant interaction for acids with less than 23 carbon atoms in the alkyl chain while van der Waals interactions dominate the packing for acids with more than 23 carbon atoms.

9.
Chem Phys Lipids ; 154(1): 68-77, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18505679

ABSTRACT

The pentadecanoic acid-heptadecanoic acid (C(15)H(29)OOH-C(17)H(33)OOH) binary system is dealt with in this article. Combined thermal analysis and X-ray powder diffraction experiments are performed to characterize the polymorphism of the pure compounds and of their mixed samples. In particular, modern methods of crystal structure resolution from powder data (direct space methods) are applied in order to investigate and compare the molecular arrangement within the solid phases of the fatty acids considered. A proposal of the binary phase diagram is given. It exhibits no less than eight distinct solid phases stabilized on relatively narrow domains of composition which shows the reduced miscibility of the constituents. Finally, a structural model of one of the intermediate solid solutions is developed which well accounts for the mixing behaviour of the two fatty acids and permits to propose an explanation about their low solid-state miscibility.


Subject(s)
Fatty Acids/chemistry , X-Ray Diffraction/methods , Models, Molecular , Solubility , Solutions/chemistry , Surface Properties , Temperature
10.
Chemistry ; 13(11): 3150-9, 2007.
Article in English | MEDLINE | ID: mdl-17212366

ABSTRACT

Crystal structures of the high-temperature phases of odd-numbered fatty acids (C(n)H(2n-1)OOH) from tridecanoic acid (C(13)H(25)OOH) to tricosanoic acid (C(23)H(45)OOH) are presented in this article. They have been determined from high-quality X-ray powder-diffraction patterns. Two types of high-temperature phases are adopted: one monoclinic A2/a with Z=8 for the fatty acids with n=13 and n=15, denoted as C'', and one monoclinic P2(1)/a with Z=4 for the longer-chain fatty acids, denoted as C'. It appears that the packing arrangement of the alkyl chains and of the carboxyl groups is similar in all of the structures. However, the arrangement at the methyl-group interface differs between the C' and C'' forms. A survey of the intermolecular interactions involved in these polymorphs coupled with a study of the effects of temperature on the structures have led us to a better understanding of the arrangement of the molecules within the high-temperature solid phases of odd-numbered fatty acids.

SELECTION OF CITATIONS
SEARCH DETAIL
...