Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
IBRO Neurosci Rep ; 12: 309-322, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35746974

ABSTRACT

Mood disorders can be considered among the most common and debilitating mental disorders. Major depression, as an example of mood disorders, is known to severely reduce the quality of life as well as psychosocial functioning of those affected. Its impact on the burden of disease worldwide has been enormous, with the World Health Organisation projecting depression to be the leading cause of mental illness by 2030. Despite several studies on the subject, little has been done to contextualise the condition in Africa, coupled with the fact that there is still much to be understood on the subject. This review attempts to shed more light on the prevalence of depression in Sub-Saharan Africa (SSA), its pathophysiology, risk factors, diagnosis and the experimental models available to study depression within the sub-region. It also evaluates the contribution of the sub-region to the global research output of depression as well as bottlenecks associated with full exploitation of the sub region's resources to manage the disorder.

2.
Basic Clin Neurosci ; 13(6): 789-798, 2022.
Article in English | MEDLINE | ID: mdl-37323952

ABSTRACT

Introduction: The neurotoxic effects of aluminum exposure during the critical period of neurodevelopment have been well documented. This study investigated the known protective effects of calcium supplementation on the cerebellum of juvenile Wistar rats following aluminum-induced neurotoxicity during lactation. Methods: Four groups of juvenile rats were exposed via lactation to distilled water (control group), aluminum (40 mg/kg/d), calcium supplement (50 mg/kg/d), and a combination of both aluminum and calcium from postnatal day 4 to day 28. The cerebella of the animals were excised to access the levels of antioxidant enzymes (superoxide dismutase [SOD], glutathione peroxidase [GPx]), lipid peroxidation (malondialdehyde), histomorphological alterations (hematoxylin and eosin staining), Nissl profile (cresyl fast violet staining), and glial activation (glial fibrillary acidic protein immunohistochemistry). Results: Lactational aluminum significantly decreased the activities of superoxide dismutase and glutathione peroxidase while exacerbating lipid peroxidation and reactive astrocyte in cerebellar lysates. Lactational calcium supplementation normalized the activities of SOD and GPx, thereby preventing excessive lipid peroxidation and glial activation. Despite no apparent changes in the general histology of the cerebellum, aluminum-induced chromatolysis changes in the Purkinje cell layer, which was counteracted by the antioxidant propensities of calcium supplementation. Conclusion: These findings support that calcium supplementation significantly protects the cerebellum against aluminum-induced oxidative stress, chromatolysis, and neuroinflammation.

3.
Neurotoxicol Teratol ; 86: 106982, 2021.
Article in English | MEDLINE | ID: mdl-33845156

ABSTRACT

Despite reports that quinoline antimalarials including chloroquine (Chq) exhibit idiosyncratic neuropsychiatric effects even at low doses, the drug continues to be in widespread use during pregnancy. Surprisingly, very few studies have examined the potential neurotoxic action of Chq exposure at different points of gestation or how this phenomenon may affect neurophysiological well-being in later life. We therefore studied behavior, and the expression of specific genes and neurochemicals modulating crucial neural processes in offspring of rats exposed to prophylactic dose of Chq during different stages of gestation. Pregnant rats were injected 5 mg/kg/day (3 times) of Chq either during early- (first week), mid- (second week), late- (third week), or throughout- (all weeks) gestation, while controls received PBS injection. Behavioral characterization of offspring between postnatal days 15-20 in the open field, Y-maze, elevated plus and elevated zero mazes revealed that Chq evoked anxiogenic responses and perturbed spatial memory in rats, although locomotor activity was generally unaltered. In the prefrontal cortex (PFC), hippocampus and cerebellum of rats prenatally exposed to Chq, RT-qPCR analysis revealed decreased mRNA expression of presynaptic marker synaptophysin, which was accompanied by downregulation of postsynaptic marker PSD95. Synaptic marker PICK1 expression was also downregulated in the hippocampus but was unperturbed in the PFC and cerebellum. In addition to recorded SOD downregulation in cortical and hippocampal lysates, induction of oxidative stress in rats prenatally exposed to Chq was corroborated by lipid peroxidation as evinced by increased MDA levels. Offspring of rats infused with Chq at mid-gestation and weekly treatment throughout gestation were particularly susceptible to neurotoxic changes, especially in the hippocampus. Interestingly, Chq did not cause histopathological changes in any of the brain areas. Taken together, our findings causally link intrauterine exposure to Chq with postnatal behavioral impairment and neurotoxic changes in rats.


Subject(s)
Behavior, Animal/drug effects , Brain Chemistry/drug effects , Chloroquine/toxicity , Neuronal Plasticity/drug effects , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/psychology , Animals , Anxiety/chemically induced , Anxiety/psychology , Female , Gene Expression/drug effects , Gestational Age , Maze Learning/drug effects , Motor Activity/drug effects , Pregnancy , Rats , Spatial Memory/drug effects
4.
Basic Clin Neurosci ; 11(5): 609-618, 2020.
Article in English | MEDLINE | ID: mdl-33643554

ABSTRACT

INTRODUCTION: This study aimed at assessing the protective mechanisms of Kolaviron (KV) on the cerebellum in a rat model of demyelination. METHODS: Twenty-eight male Wistar rats were used in the present study. They were randomly divided into 4 groups of 7 rats. Group A (control) received corn oil (0.5 mL/kg/d); group B received 0.2% Cuprizone (CPZ); group C was treated with 200 mg/kg/d of KV, and group D received 0.2% CPZ and 200 mg/kg/d KV for 6 weeks. CPZ powder was mixed with the regular diet while KV was dissolved in corn oil and administered orally. A behavioral test was conducted at the termination of the experiment. Thereafter, the animals were sacrificed and their brains were removed with the excision of the cerebellum. A part of the cerebelli underwent tissue processing with a series of 5 µm thick sections cut from paraffin blocks for histological and immunohistochemical assessment. Besides, the remaining cerebellar tissues were homogenized for the spectrophotometric assays of Oxidative Stress (OS) parameters. RESULTS: The current research findings revealed minimal weight gain following CPZ treatment, but significant weight increase in KV-treated rats. CPZ treatment was associated with a reduction in the number of the line crossed, rearing frequency, rearing duration, center square entry, and center square duration; however, it increased the freezing time, i.e. significantly reversed in the KV-treated animals. Oxidative markers, such as Superoxide Dismutase (SOD) and GPx were reduced in CPZ-treated rats with elevated MDA levels. However, these data were significantly reversed by the co-administration of CPZ and KV. At the tissue level, the cerebellar cortex was characterized by poorly defined layers, cryptic granules, as well as chromatolysis and pyknotic Purkinje cells with the evidence of hypertrophic astrogliosis. CONCLUSION: CPZ treatment significantly depressed locomotor and exploratory activities. Furthermore, it increased OS and cerebellar toxicity. However, KV intervention significantly enhanced behavioral functions and ameliorated CPZ-induced cerebellar degeneration. Moreover, it considerably regulated OS markers in the cerebellum of the rat model of demyelinating diseases.

5.
Anatomy & Cell Biology ; : 342-354, 2020.
Article | WPRIM (Western Pacific) | ID: wpr-830250

ABSTRACT

Cymbopogon citratus is a tropical phytomedicinal plant that is widely known for its hypoglycemic, hypolipidemic, anxiolytic, sedative, antioxidative and anti-inflammatory properties. In this study, we have examined the neuroprotective effects of the essential oil (ESO) of Cymbopogon citratus, following aluminum chloride (AlCl3)-induced neurotoxicity within the cerebellum of Wistar rats. A total of 40 adult male Wistar rats were assigned into five groups and treated orally as follows: A–phosphate-buffered saline (1 ml daily for 15 days); B–ESO (50 mg/kg daily for 15 days); C–AlCl3 (100 mg/kg daily for 15 days); D–AlCl3 then ESO (100 mg/kg AlCl3 daily for 15 days followed by 50 mg/kg ESO daily for subsequent 15 days); E– ESO then AlCl3 (50 mg/kg ESO daily for 15 days followed by 100 mg/kg AlCl3 daily for following 15 days). To address our questions, we observed the locomotion and exploratory behavior of the rats in the open field apparatus and subsequently evaluated cerebellar oxidative redox parameters, neural bioenergetics, acetylcholinesterase levels, transferrin receptor protein, and total protein profiles by biochemical assays. Furthermore, we investigated cerebellar histomorphology and Nissl profile by H&E and Cresyl violet Nissl staining procedures. ESO treatment markedly attenuated deficits in exploratory activities and rearing behavior following AlCl3 toxicity, indicating its anxiolytic potentials. Additionally, AlCl3 evokedincrease in malondialdehyde and nitric oxide levels, as well as repressed cerebellar catalase, glutathione peroxidase, and superoxide dismutase profiles were normalised to baseline levels by ESO treatment. Treatment with ESO, ergo, exhibits substantial neuroprotective and modulatory potentials in response to AlCl3 toxicity.

6.
Anatomy & Cell Biology ; : 342-354, 2020.
Article | WPRIM (Western Pacific) | ID: wpr-830243

ABSTRACT

Cymbopogon citratus is a tropical phytomedicinal plant that is widely known for its hypoglycemic, hypolipidemic, anxiolytic, sedative, antioxidative and anti-inflammatory properties. In this study, we have examined the neuroprotective effects of the essential oil (ESO) of Cymbopogon citratus, following aluminum chloride (AlCl3)-induced neurotoxicity within the cerebellum of Wistar rats. A total of 40 adult male Wistar rats were assigned into five groups and treated orally as follows: A–phosphate-buffered saline (1 ml daily for 15 days); B–ESO (50 mg/kg daily for 15 days); C–AlCl3 (100 mg/kg daily for 15 days); D–AlCl3 then ESO (100 mg/kg AlCl3 daily for 15 days followed by 50 mg/kg ESO daily for subsequent 15 days); E– ESO then AlCl3 (50 mg/kg ESO daily for 15 days followed by 100 mg/kg AlCl3 daily for following 15 days). To address our questions, we observed the locomotion and exploratory behavior of the rats in the open field apparatus and subsequently evaluated cerebellar oxidative redox parameters, neural bioenergetics, acetylcholinesterase levels, transferrin receptor protein, and total protein profiles by biochemical assays. Furthermore, we investigated cerebellar histomorphology and Nissl profile by H&E and Cresyl violet Nissl staining procedures. ESO treatment markedly attenuated deficits in exploratory activities and rearing behavior following AlCl3 toxicity, indicating its anxiolytic potentials. Additionally, AlCl3 evokedincrease in malondialdehyde and nitric oxide levels, as well as repressed cerebellar catalase, glutathione peroxidase, and superoxide dismutase profiles were normalised to baseline levels by ESO treatment. Treatment with ESO, ergo, exhibits substantial neuroprotective and modulatory potentials in response to AlCl3 toxicity.

7.
Anat Cell Biol ; 51(2): 119-127, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29984057

ABSTRACT

Cuprizone is a neurotoxin with copper-chelating ability used in animal model of multiple sclerosis in which oxidative stress has been documented as one of the cascade in the pathogenesis. Moringa oleifera is a phytomedicinal plant with antioxidant and neuroprotective properties. This study aimed at evaluating the ameliorative capability of M. oleifera in cuprizone-induced behavioral and histopathological alterations in the prefrontal cortex and hippocampus of Wistar rats. Four groups of rats were treated with normal saline, cuprizone, M. oleifera and a combination of M. oleifera and cuprizone, for five weeks. The rats were subjected to Morris water maze and Y-maze to assess long and short-term memory respectively. The animals were sacrificed, and brain tissues were removed for histochemical and enzyme lysate immunosorbent assay for catalase, superoxide dismutase, and nitric oxide. Cuprizone significantly induced oxidative and nitrosative stress coupled with memory decline and cortico-hippocampal neuronal deficits; however, administration of M. oleifera significantly reversed the neuropathological deficits induced by cuprizone.

8.
Environ Toxicol Pharmacol ; 62: 120-131, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30005307

ABSTRACT

Metal ions are crucial for normal neurochemical signaling and perturbations in their homeostasis have been associated with neurodegenerative processes. Hypothesizing that in vivo modulation of key neurochemical processes including metal ion regulation (by transferrin receptor-1: TfR-1) in cells can improve disease outcome, we investigated the efficacy of a complex vitamin supplement (CVS) containing B-vitamins and ascorbic acid in preventing/reversing behavioral decline and neuropathology in rats. Wistar rats (eight weeks-old) were assigned into five groups (n = 8), including controls and those administered CVS (400 mg/kg/day) for two weeks before or after AlCl3 (100 mg/kg)-induced neurotoxicity. Following behavioral assessments, prefrontal cortex (PFC) and hippocampus were prepared for biochemical analyses, histology and histochemistry. CVS significantly reversed reduction of exploratory/working memory, frontal-dependent motor deficits, cognitive decline, memory dysfunction and anxiety. These correlated with CVS-dependent modulation of TfP-1 expression that were accompanied by significant reversal of neural oxidative stress in expressed superoxide dismutase, nitric oxide, catalase, glutathione peroxidase and malondialdehyde. Furthermore, CVS inhibited neural bioenergetics dysfunction, with increased labelling of glucokinase within PFC and hippocampus correlating with increased glucose-6-phosphate dehydrogenase and decreased lactate dehydrogenase expressions. These relates to inhibition of over-expressed acetylcholinesterase and increased total protein synthesis. Histological and Nissl staining of thin sections corroborated roles of CVS in reversing AlCl3-induced neuropathology. Summarily, we showed the role of CVS in normalizing important neurochemical molecules linking concurrent progression of oxidative stress, bioenergetics deficits, synaptic dysfunction and cellular hypertrophy during neurodegeneration.


Subject(s)
Ascorbic Acid/pharmacology , Neuroprotective Agents/pharmacology , Vitamin B Complex/pharmacology , Vitamins/pharmacology , Aluminum Chloride , Aluminum Compounds/toxicity , Animals , Anxiety/drug therapy , Anxiety/physiopathology , Behavior, Animal/drug effects , Chlorides/toxicity , Cognition/drug effects , Exploratory Behavior/drug effects , Hippocampus/drug effects , Hippocampus/physiology , Male , Maze Learning/drug effects , Memory/drug effects , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/physiopathology , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiology , Rats, Wistar
9.
Pathophysiology ; 25(4): 299-306, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29730092

ABSTRACT

Multiple sclerosis is a demyelinating condition of the central nervous system which commonly affects young adults. Kolaviron, a biflavonoid isolate of Garcinia kola, has been used in experimental studies which explored its anti-oxidative, anti-inflammatory and anti-genotoxic properties. This work was aimed at unraveling the possible ameliorative effect of kolaviron on cuprizone-induced demyelination in the prefrontal cortices of Wistar rats. A total of 28 adult male Wistar rats were divided into four groups A-D. Group A received corn oil (Control), group B received 0.2% Cuprizone, group C received kolaviron (200 mg/kg bw), while group D rats were treated concomitantly with both kolaviron and cuprizone. All groups were treated for 42 days, after which behavioral, histological, immunohistochemical and biochemical analyses were carried out on the prefrontal cortices. Cuprizone significantly down-regulated the level of superoxide dismutase, exacerbated lipid peroxidation and, reduced spatial memory. Cuprizone also induced peripheral and central chromatolysis alongside with atrophied astrocytes in the prefrontal cortex. These alterations were significantly prevented in kolaviron-treated rats, as kolaviron sustained the integrity of neuronal and non-neuronal cells. The activity of kolaviron observed in this study was due to its intrinsic antioxidant properties, which enabled it to combat oxidative damage induced by cuprizone, thereby making kolaviron a potential tool in neurodegeneration therapy of demyelination origin.

10.
Pathophysiology ; 25(1): 57-62, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29307662

ABSTRACT

Nicotine is a neuro-stimulant that has been implicated in the pathophysiology of many brain diseases. The need to prevent or alleviate the resulting dysfunction is therefore paramount, which has also given way to the use of medicinal plants in the management of brain conditions. This study was designed to determine the histomorphological and neurobehavioural changes in the cerebellum of Wistar rats following nicotine insult and how such injuries respond to Moringa intervention. Twenty-four adult male Wistar rats were divided into 4 groups. Group A and B were orally treated with normal saline and Moringa oleifera respectively for twenty-eight days; Group C was treated with nicotine while group D was treated orally with Moringa oleifera and intraperitoneally with nicotine for twenty-eight days. Animals were subjected to the open field test on the last day of treatment. 24 h after last day treatment, the animals were anesthetized and perfusion fixation was carried out. The cerebellum was excised and post-fixed in 4% paraformaldehyde and thereafter put through routine histological procedures. Results revealed cytoarchitectural distortion and extreme chromatolysis in neuronal cells of the cerebellar cortical layers in the nicotine-treated group. The Purkinje cells of the cerebellum of animals in this group were degenerated. There were also reduced locomotor activities in the group. Moringa was able to prevent the chromatolysis, distortion of the cerebellar cortical cells and neurobehavioural deficit. Our result suggests that Moringa oleifera could prevent nicotine-induced cerebellar injury in Wistar rats, with the possibility of ameliorating the clinical features presented in associated cerebellar pathology.

11.
Malays J Med Sci ; 25(5): 35-47, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30914861

ABSTRACT

BACKGROUND AND AIM: This study aimed to determine the effect of gestational nicotine exposure before neurodevelopment on the morphology and histology of the prefrontal cortex (PFC) in rats. METHODOLOGY: Adult female Wistar rats were time-mated and grouped into three categories: (a) control-given 0.1 mL of normal saline, (b) low-dose nicotine-given 6.88 mg/ kg/d/0.05 mL, and (c) high-dose nicotine-given 13.76 mg/kg/d/0.1 mL in two divided doses. Treatment was given intraperitoneally from gestational days 2 to 6. On postnatal day 15 (P15), the pups were separated from their mothers, anaesthetised and sacrificed, followed by intracardial perfusion with 4% paraformaldehyde. PFC was excised from the brain and processed for tissue histology, histochemistry, and morphology of brain cells. RESULTS: Gestational nicotine exposure during the first week of gestation in rats significantly reduced birth weights in nicotine-treated groups compared with control; it, however, accelerated body weights, altered neuronal morphology, and elevated astrocytic count significantly, while oligodendroglial count was slightly increased in the PFC of juvenile rats examined at P15. CONCLUSION: These alterations revealed that gestational nicotine exposure before the commencement of the cellular processes involved in brain development negatively affects neurodevelopment, and this could result in neurological dysfunctions in later life.

12.
Malays J Med Sci ; 25(2): 50-63, 2018 Mar.
Article in English | MEDLINE | ID: mdl-30918455

ABSTRACT

BACKGROUND: This study explored the efficacy of kolaviron-a biflavonoid complex isolated from the seeds of Garcinia kola-in protecting against cuprizone (CPZ)-induced demyelination in both the prefrontal cortex and the hippocampus of Wistar rats. METHODOLOGY: Thirty rats were treated to receive 0.5 mL phosphate-buffered saline (group A, control), 0.5 mL corn oil (group B), 0.2% CPZ (group C), for 6 weeks, 0.2% CPZ for 3 weeks and then 200 mg/kg of Kv for 3 weeks (group D), or 200 mg/kg of Kv for 3 weeks followed by 0.2% CPZ for 3 weeks (group E). Rats were assessed for exploratory functions and anxiety-like behaviour before being euthanised and perfused transcardially with 4% paraformaldehyde. Prefrontal and hippocampal thin sections were stained in hematoxylin and eosin and cresyl fast violet stains. RESULTS: CPZ-induced demyelination resulted in behavioural impairment as seen by reduced exploratory activities, rearing behaviour, stretch attend posture, center square entry, and anxiogenic characteristics. Degenerative changes including pyknosis, karyorrhexis, neuronal hypertrophy, and reduced Nissl integrity were also seen. Animals treated with Kv showed significant improvement in behavioural outcomes and a comparatively normal cytoarchitectural profile. CONCLUSION: Kv provides protective roles against CPZ-induced neurotoxicity through prevention of ribosomal protein degradation.

13.
Ann Neurosci ; 24(1): 32-45, 2017 May.
Article in English | MEDLINE | ID: mdl-28827919

ABSTRACT

BACKGROUND: Recent evidences suggest that cerebellar degeneration may be associated with the development of Alzheimer's disease (AD). However, previous reports were mainly observational, lacking substantial characterization of cellular and molecular cerebellar features during AD progression. PURPOSE: This study is aimed at characterizing the cerebellum in rat models of AD and assessing the corresponding neuroprotective mechanisms of Garcinia biflavonoid complex (GBc). METHODS: Male Wistar rats were grouped and treated alone or in combination with PBS (ad libitum)/day, corn oil (CO; 2 mL/kgBw/day), GBc (200 mg/kgBw/day), sodium azide (NaN3) (15 mg/kgBw/day) and aluminium chloride (AlCl3) (100 mg/kgBw/day). Groups A and B received PBS and CO, respectively; C received GBc; D received NaN3; E received AlCl3; F received NaN3 then GBc subsequently; G received AlCl3 then GBc subsequently; H received NaN3 and GBc simultaneously while I received AlCl3 and GBc simultaneously. Following treatments, cerebellar cortices were processed for histology, immunohistochemistry and colorimetric assays. RESULTS: Our data revealed that cryptic granule neurons and pyknotic Purkinje cell bodies (characterized by short dendritic/axonal processes) correspond to indistinctly demarcated cerebellar layers in rats treated with AlCl3 and NaN3. These correlates, with observed hypertrophic astrogliosis, increased the neurofilament deposition, depleted the antioxidant system-shown by expressed superoxide dismutase and glutathione peroxidase, and cerebellar glucose bioenergetics dysfunction-exhibited in assayed lactate dehydrogenase and glucose-6-phosphate dehydrogenase. We further showed that GBc reverses cerebellar degeneration through modulation of neurochemical signaling pathways and stressor molecules that underlie AD pathogenesis. CONCLUSION: Cellular, molecular and metabolic neurodegeneration within the cerebellum is associated with AlCl3 and NaN3-induced AD while GBc significantly inhibits corresponding neurotoxicity and is more efficacious when pre-administered.

14.
Environ Toxicol Pharmacol ; 50: 200-211, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28192749

ABSTRACT

Exploring the links between neural pathobiology and behavioural deficits in Alzheimer's disease (AD), and investigating substances with known therapeutic advantages over subcellular mechanisms underlying these dysfunctions could advance the development of potent therapeutic molecules for AD treatment. Here we investigated the efficacy of ascorbic acid (AA) in reversing aluminium chloride (AlCl3)-induced behavioural deficits and neurotoxic cascades within prefrontal cortex (PFC) and hippocampus of rats. A group of rats administered oral AlCl3 (100mg/kg) daily for 15days showed degenerative changes characterised by significant weight loss, reduced exploratory/working memory, frontal-dependent motor deficits, cognitive decline, memory dysfunction and anxiety during behavioural assessments compared to control. Subsequent analysis showed that oxidative impairment-indicated by depleted superoxide dismutase and lipid peroxidation (related to glutathione-S-transferase activity), cholinergic deficits seen by increased neural acetylcholinesterase (AChE) expression and elevated lactate dehydrogenase underlie behavioural alterations. Furthermore, evidences of proteolysis were seen by reduced Nissl profiles in neuronal axons and dendrites which correspond to apoptotic changes observed in H&E staining of PFC and hippocampal sections. Interestingly, AA (100mg/kg daily for 15days) significantly attenuated behavioural deficits in rats through inhibition of molecular and cellular stressor proteins activated by AlCl3. Our results showed that the primary mechanisms underlying AA therapeutic advantages relates closely with its abilities to scavenge free radicals, prevent membrane lipid peroxidation, modulate neuronal bioenergetics, act as AChE inhibitor and through its anti-proteolytic properties. These findings suggest that supplementing endogenous AA capacity through its pharmacological intake may inhibit progression of AD-related neurodegenerative processes and behavioural alterations.


Subject(s)
Aluminum Compounds/toxicity , Alzheimer Disease/drug therapy , Anxiety/drug therapy , Ascorbic Acid/administration & dosage , Chlorides/toxicity , Exploratory Behavior/drug effects , Aluminum Chloride , Alzheimer Disease/chemically induced , Alzheimer Disease/psychology , Animals , Ascorbic Acid/pharmacology , Disease Models, Animal , Disease Progression , Hippocampus/drug effects , Humans , Lipid Peroxidation , Prefrontal Cortex/drug effects , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...