Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 112(2): 359-369, 2023 02.
Article in English | MEDLINE | ID: mdl-36442683

ABSTRACT

Developing high-dose biologic drugs for subcutaneous injection often requires high-concentration formulations and optimizing viscosity, solubility, and stability while overcoming analytical, manufacturing, and administration challenges. To understand industry approaches for developing high-concentration formulations, the Formulation Workstream of the BioPhorum Development Group, an industry-wide consortium, conducted an inter-company collaborative exercise which included several surveys. This collaboration provided an industry perspective, experience, and insight into the practicalities for developing high-concentration biologics. To understand solubility and viscosity, companies desire predictive tools, but experience indicates that these are not reliable and experimental strategies are best. Similarly, most companies prefer accelerated and stress stability studies to in-silico or biophysical-based prediction methods to assess aggregation. In addition, optimization of primary container-closure and devices are pursued to mitigate challenges associated with high viscosity of the formulation. Formulation strategies including excipient selection and application of studies at low concentration to high-concentration formulations are reported. Finally, analytical approaches to high concentration formulations are presented. The survey suggests that although prediction of viscosity, solubility, and long-term stability is desirable, the outcome can be inconsistent and molecule dependent. Significant experimental studies are required to confirm robust product definition as modeling at low protein concentrations will not necessarily extrapolate to high concentration formulations.


Subject(s)
Antibodies, Monoclonal , Biological Products , Excipients , Viscosity , Solubility
2.
J Pharm Sci ; 111(4): 1092-1103, 2022 04.
Article in English | MEDLINE | ID: mdl-34600941

ABSTRACT

In-use stability and compatibility studies are often used in biotherapeutic development to assess stability and compatibility of biologic drugs with diluents and/or administration components at relevant conditions for the target route of administration (commonly intravenous, subcutaneous or intramuscular), to assure that patient safety and product efficacy are maintained during clinical use. To gain an understanding of current industry approaches for in-use stability and compatibility studies, the Formulation Workstream of the BioPhorum Development Group (BPDG), an industry-wide consortium, conducted an inter-company collaboration exercise, which included five bench-marking surveys around in-use stability and compatibility studies of biologic drugs. The results of this industry collaboration provide insights into the practicalities of these studies and how they are being used to support administration of biologics from early clinical programs to marketed products. The surveys queried topics including regulatory strategies and feedback; clinical in-use formulation, patient and site considerations; clinical blinding, masking and placebo approaches; study setup, execution and reporting; and clinical in-use stability and compatibility testing to provide a comprehensive picture of the range of common industry practices. This paper discusses the survey results and presents various approaches which can be used to guide the strategy and design of an in-use stability and compatibility program based on clinical and biomolecule needs.


Subject(s)
Biological Products , Drug Stability , Humans , Pharmaceutical Preparations , Surveys and Questionnaires
3.
mBio ; 9(6)2018 11 27.
Article in English | MEDLINE | ID: mdl-30482835

ABSTRACT

As oral poliovirus vaccine (OPV) causes vaccine-associated paralytic poliomyelitis, the polio endgame strategy introduced by the Global Polio Eradication Initiative calls for a phased withdrawal of OPV and an introduction of inactivated poliovirus vaccine (IPV). The introduction of IPV creates challenges in maintaining the cold chain for vaccine storage and distribution. Recent advances in lyophilization have helped in finding a temperature-stable formulation for multiple vaccines; however, poliovirus vaccines have yet to capture a stable, safe formula for lyophilization. In addition, efficient in vitro methods for antigen measurement are needed for screening stable vaccine formulations. Here, we report size exclusion high-performance liquid chromatography (SE-HPLC) as a reliable means to identify the leading lyophilized formulation to generate thermostable Sabin inactivated poliovirus vaccine (sIPV). High-throughput screening and SE-HPLC determined the leading formulation, resulting in 95% D-antigen recovery and low residual moisture content of sIPV following lyophilization. Furthermore, the lyophilized sIPV remained stable after 4 weeks of incubation at ambient temperature and induced strong neutralizing antibodies and full protection of poliovirus receptor transgenic mice against the in vivo challenge of wild-type poliovirus. Overall, this report describes a novel means for the high-throughput evaluation of sIPV antigenicity and a thermostable lyophilized sIPV with in vivo vaccine potency.IMPORTANCE Poliomyelitis is a highly contagious disease caused by the poliovirus. While the live attenuated OPV has been the vaccine of choice, a major concern is its ability to revert to a form that can cause paralysis, so-called vaccine-associated paralytic poliomyelitis. Therefore, the new endgame strategy of the Global Polio Eradication Initiative includes the introduction of an IPV. However, the feasibility of the use of current IPV formulations in developing countries is limited, because IPV is insufficiently stable to be purified, transported, and stored under unrefrigerated conditions. We successfully designed the sIPV for use in the dry state that maintains the full vaccine potency in animal models after incubation at ambient temperature. This report provides, for the first time, candidate formulations of sIPV that are stable at elevated temperatures.


Subject(s)
Freeze Drying , Poliomyelitis/prevention & control , Poliovirus Vaccine, Inactivated/isolation & purification , Poliovirus Vaccine, Inactivated/radiation effects , Technology, Pharmaceutical , Temperature , Animals , Chromatography, Gel , Chromatography, High Pressure Liquid , Disease Models, Animal , Drug Stability , Mice, Transgenic , Poliovirus Vaccine, Inactivated/administration & dosage , Poliovirus Vaccine, Inactivated/immunology
4.
J Proteome Res ; 14(6): 2425-36, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25855029

ABSTRACT

Cancer-related alterations in protein glycosylation may serve as diagnostic or prognostic biomarkers or may be used for monitoring disease progression. Clusterin is a medium abundance, yet heavily glycosylated, glycoprotein that is upregulated in clear cell renal cell carcinoma (ccRCC) tumors. We recently reported that the N-glycan profile of clusterin is altered in the plasma of ccRCC patients. Here, we characterized the occupancy and the degree of heterogeneity of individual N-glycosylation sites of clusterin in the plasma of patients diagnosed with localized ccRCC, before and after curative nephrectomy (n = 40). To this end, we used tandem mass spectrometry of immunoaffinity-enriched plasma samples to analyze the individual glycosylation sites in clusterin. We determined the levels of targeted clusterin glycoforms containing either a biantennary digalactosylated disialylated (A2G2S2) glycan or a core fucosylated biantennary digalactosylated disialylated (FA2G2S2) glycan at N-glycosite N374. We showed that the presence of these two clusterin glycoforms differed significantly in the plasma of patients prior to and after curative nephrectomy for localized ccRCC. Removal of ccRCC led to a significant increase in the levels of both FA2G2S2 and A2G2S2 glycans in plasma clusterin. These changes were further confirmed by lectin blotting of plasma clusterin. It is envisioned that these identified glycan alterations may provide an additional level of therapeutic or biomarker sensitivity than levels currently achievable by monitoring expression differences alone.


Subject(s)
Carcinoma, Renal Cell/metabolism , Clusterin/metabolism , Glycopeptides/metabolism , Kidney Neoplasms/metabolism , Polysaccharides/metabolism , Carcinoma, Renal Cell/pathology , Chromatography, Affinity , Chromatography, High Pressure Liquid , Clusterin/chemistry , Glycopeptides/chemistry , Humans , Kidney Neoplasms/pathology , Polysaccharides/chemistry , Reproducibility of Results , Tandem Mass Spectrometry
5.
Bioanalysis ; 6(19): 2537-48, 2014.
Article in English | MEDLINE | ID: mdl-25411697

ABSTRACT

AIM: Current analytical tools lack the required capacity to reduce the complexity of the plasma proteome and identify low-level proteins of clinical interest. Hence, the need to develop a fractionation approach to provide adequate throughput for a clinical study and minimize the loss and improve the detection of low abundance proteins. MATERIALS & METHODS: We present the development of an analytical platform that combines the depletion of 12 high abundance proteins and multi-lectin affinity chromatography (12P-M-LAC) fractionation. RESULTS & CONCLUSION: We validated the highly specific, stable and robust 12P-M-LAC platform using human plasma. An improved enrichment of low abundance proteins and glycoproteins with minimum sample loss was achieved demonstrating the suitability of this platform in future biomarker discovery studies.


Subject(s)
Blood Proteins/metabolism , Chromatography, Affinity/methods , Lectins/metabolism , Proteome/analysis , Proteomics/methods , Humans
6.
J Proteome Res ; 13(11): 4889-900, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25184692

ABSTRACT

Clear cell renal cell carcinoma is the most prevalent of all reported kidney cancer cases, and currently there are no markers for early diagnosis. This has stimulated great research interest recently because early detection of the disease can significantly improve the low survival rate. Combining the proteome, glycoproteome, and N-glycome data from clear cell renal cell carcinoma plasma has the potential of identifying candidate markers for early diagnosis and prognosis and/or to monitor disease recurrence. Here, we report on the utilization of a multi-dimensional fractionation approach (12P-M-LAC) and LC-MS/MS to comprehensively investigate clear cell renal cell carcinoma plasma collected before (disease) and after (non-disease) curative nephrectomy (n = 40). Proteins detected in the subproteomes were investigated via label-free quantification. Protein abundance analysis revealed a number of low-level proteins with significant differential expression levels in disease samples, including HSPG2, CD146, ECM1, SELL, SYNE1, and VCAM1. Importantly, we observed a strong correlation between differentially expressed proteins and clinical status of the patient. Investigation of the glycoproteome returned 13 candidate glycoproteins with significant differential M-LAC column binding. Qualitative analysis indicated that 62% of selected candidate glycoproteins showed higher levels (upregulation) in M-LAC bound fraction of disease samples. This observation was further confirmed by released N-glycans data in which 53% of identified N-glycans were present at different levels in plasma in the disease vs non-disease samples. This striking result demonstrates the potential for significant protein glycosylation alterations in clear cell renal cell carcinoma cancer plasma. With future validation in a larger cohort, information derived from this study may lead to the development of clear cell renal cell carcinoma candidate biomarkers.


Subject(s)
Biomarkers, Tumor/blood , Carcinoma, Renal Cell/blood , Carcinoma, Renal Cell/diagnosis , Glycoproteins/metabolism , Polysaccharides/metabolism , Proteome/metabolism , Proteomics/methods , Carcinoma, Renal Cell/surgery , Cell Fractionation , Chromatography, Liquid , Humans , Nephrectomy , Postoperative Period , Tandem Mass Spectrometry
7.
J Proteome Res ; 13(1): 289-99, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24303806

ABSTRACT

Currently, pancreatic cancer is the fourth cause of cancer death. In 2013, it is estimated that ∼38 460 people will die of pancreatic cancer. Early detection of malignant cyst (pancreatic cancer precursor) is necessary to help prevent late diagnosis of the tumor. In this study, we characterized glycoproteins and nonglycoproteins on pooled mucinous (n = 10) and nonmucinous (n = 10) pancreatic cyst fluid to identify "proteins of interest" to differentiate between mucinous cyst from nonmucinous cyst and investigate these proteins as potential biomarker targets. An automated multilectin affinity chromatography (M-LAC) platform was utilized for glycoprotein enrichment followed by nano-LC-MS/MS analysis. Spectral count quantitation allowed for the identification of proteins with significant differential levels in mucinous cysts from nonmucinous cysts of which one protein (periostin) was confirmed via immunoblotting. To exhaustively evaluate differentially expressed proteins, we used a number of proteomic tools including gene ontology classification, pathway and network analysis, Novoseek data mining, and chromosome gene mapping. Utilization of complementary proteomic tools revealed that several of the proteins such as mucin 6 (MUC6), bile salt-activated lipase (CEL), and pyruvate kinase lysozyme M1/M2 with significant differential expression have strong association with pancreatic cancer. Furthermore, chromosome gene mapping demonstrated coexpressions and colocalization of some proteins of interest including 14-3-3 protein epsilon (YWHAE), pigment epithelium derived factor (SERPINF1), and oncogene p53.


Subject(s)
Chromatography, Affinity/methods , Glycoproteins/metabolism , Lectins/metabolism , Pancreatic Cyst/metabolism , Electrophoresis, Polyacrylamide Gel , Humans , Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...