Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976349

ABSTRACT

Liquid metal (LM) nanodroplets possess intriguing surface properties, thus offering promising potential in chemical synthesis, catalysis, and biomedicine. However, the reaction kinetics and product growth at the surface of LM nanodroplets are significantly influenced by the interface involved, which has not been thoroughly explored and understood. Here, we propose an interface engineering strategy, taking a spontaneous galvanic reaction between Ga0 and AuCl4- ions as a representative example, to successfully modulate the growth of heterostructures on the surface of Ga-based LM nanodroplets by establishing a dielectric interface with a controllable thickness between LM and reactive surroundings. Combining high-resolution electron energy-loss spectroscopy (EELS) analysis and theoretical simulation, it was found that the induced charge distribution at the interface dominates the spatiotemporal distribution of the reaction sites. Employing tungsten oxide (WOx) with varying thicknesses as the demonstrated dielectric interface of LM, Ga@WOx@Au with distinct core-shell-satellite or dimer-like heterostructures has been achieved and exhibited different photoresponsive capabilities for photodetection. Understanding the kinetics of product growth and the regulatory strategy of the dielectric interface provides an experimental approach to controlling the structure and properties of products in LM nanodroplet-involved chemical processes.

2.
Adv Mater ; : e2405858, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899584

ABSTRACT

To improve thermoelectric efficiency, various tactics have been employed with considerable success to decouple intertwined material attributes. However, the integration of magnetism, derived from the unique spin characteristic that other methods cannot replicate, has been comparatively underexplored and presents an ongoing intellectual challenge. A previous research has shown that vacancy-filling Heuslers offer a highly adaptable framework for modulating thermoelectric properties. Here, it is demonstrated how intrinsic magnetic-electrical-thermal coupling can enhance the thermoelectric performance of vacancy-filling Heusler alloys. The materials, Nb0.75Ti0.25FeCrxSb with 0 ≤ x ≤ 0.1, feature a fraction of magnetic Cr ions that randomly occupy the vacancy sites of the Nb0.75Ti0.25FeSb half-Heusler matrix. These alloys achieve a remarkable thermoelectric figure of merit (zT) of 1.21 at 973 K, owing to increased Seebeck coefficient and decreased thermal conductivity. The mechanism is primarily due to the introduction of magnetism, which increases the density-of-states effective mass (reaching levels up to 15 times that of a free electron's mass) and simultaneously reduces the electronic thermal conductivity. Mass and strain-field fluctuations further reduce the lattice thermal conductivity. Even higher zT values can potentially be achieved by carefully balancing electron mobility and effective mass. This work underscores the substantial prospects for exploiting magnetic-electrical-thermal synergies in cutting-edge thermoelectric materials.

3.
ACS Appl Mater Interfaces ; 16(27): 35006-35012, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38935752

ABSTRACT

Na2Ti3O7 has attracted significant attention due to its ecofriendliness and cost-effectiveness for sodium-ion batteries. However, their limited cycling stability hampers their practical applications. Herein, we elucidate a mechanism of structural degradation caused by the heterogeneous phase transition in the Na2Ti3O7 anode using aberration-corrected (scanning) transmission electron microscopy (S)TEM and in situ TEM. It is found that the unevenly distributed phase transition results in the accumulation of strain, which promotes the growth of microcracks and eventually leads to structural decomposition and electrochemical failure. Motivated by this degradation mechanism, nanowires were proposed, and the structural stability is thus improved with the lattice strain effectively released. These findings deepen our understanding of ion transport and degradation mechanisms in intercalated layered electrode materials while emphasizing the significance of the material structure engineered for improving electrode performance.

4.
Nat Commun ; 15(1): 5108, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38876994

ABSTRACT

Low-cost thermoelectric materials with simultaneous high performance and superior plasticity at room temperature are urgently demanded due to the lack of ever-lasting power supply for flexible electronics. However, the inherent brittleness in conventional thermoelectric semiconductors and the inferior thermoelectric performance in plastic organics/inorganics severely limit such applications. Here, we report low-cost inorganic polycrystalline Mg3Sb0.5Bi1.498Te0.002, which demonstrates a remarkable combination of large strain (~ 43%) and high figure of merit zT (~ 0.72) at room temperature, surpassing both brittle Bi2(Te,Se)3 (strain ≤ 5%) and plastic Ag2(Te,Se,S) and organics (zT ≤ 0.4). By revealing the inherent high plasticity in Mg3Sb2 and Mg3Bi2, capable of sustaining over 30% compressive strain in polycrystalline form, and the remarkable deformability of single-crystalline Mg3Bi2 under bending, cutting, and twisting, we optimize the Bi contents in Mg3Sb2-xBix (x = 0 to 1) to simultaneously boost its room-temperature thermoelectric performance and plasticity. The exceptional plasticity of Mg3Sb2-xBix is further revealed to be brought by the presence of a dense dislocation network and the persistent Mg-Sb/Bi bonds during slipping. Leveraging its high plasticity and strength, polycrystalline Mg3Sb2-xBix can be easily processed into micro-scale dimensions. As a result, we successfully fabricate both in-plane and out-of-plane flexible Mg3Sb2-xBix thermoelectric modules, demonstrating promising power density. The inherent remarkable plasticity and high thermoelectric performance of Mg3Sb2-xBix hold the potential for significant advancements in flexible electronics and also inspire further exploration of plastic inorganic semiconductors.

5.
Nat Commun ; 15(1): 5104, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877022

ABSTRACT

The recent discovery of superconductivity in infinite-layer nickelate films has sparked significant interest and expanded the realm of superconductors, in which the infinite-layer structure and proper chemical doping are both of the essence. Nonetheless, the reasons for the absence of superconductivity in bulk infinite-layer nickelates remain puzzling. Herein, we investigate atomic defects and electronic structures in bulk infinite-layer Nd0.8Sr0.2NiO2 using scanning transmission electron microscopy. Our observations reveal the presence of three-dimensional (3D) block-like structural domains resulting from intersecting defect structures, disrupting the continuity within crystal grains, which could be a crucial factor in giving rise to the insulating character and inhibiting the emergence of superconductivity. Moreover, the infinite-layer structure, without complete topotactic reduction, retains interstitial oxygen atoms on the Nd atomic plane in bulk nickelates, possibly further aggravating the local distortions of NiO2 planes and hindering the superconductivity. These findings shed light on the existence of structural and atomic defects in bulk nickelates and provide valuable insights into the influence of proper topotactic reduction and structural orders on superconductivity.

6.
Nat Commun ; 15(1): 2992, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582768

ABSTRACT

Nonlinear transport is a unique functionality of noncentrosymmetric systems, which reflects profound physics, such as spin-orbit interaction, superconductivity and band geometry. However, it remains highly challenging to enhance the nonreciprocal transport for promising rectification devices. Here, we observe a light-induced giant enhancement of nonreciprocal transport at the superconducting and epitaxial CaZrO3/KTaO3 (111) interfaces. The nonreciprocal transport coefficient undergoes a giant increase with three orders of magnitude up to 105 A-1 T-1. Furthermore, a strong Rashba spin-orbit coupling effective field of 14.7 T is achieved with abundant high-mobility photocarriers under ultraviolet illumination, which accounts for the giant enhancement of nonreciprocal transport coefficient. Our first-principles calculations further disclose the stronger Rashba spin-orbit coupling strength and the longer relaxation time in the photocarrier excitation process, bridging the light-property quantitative relationship. Our work provides an alternative pathway to boost nonreciprocal transport in noncentrosymmetric systems and facilitates the promising applications in opto-rectification devices and spin-orbitronic devices.

7.
Sci Bull (Beijing) ; 69(8): 1037-1049, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38431467

ABSTRACT

In thermoelectrics, doping is essential to augment the figure of merit. Traditional strategy, predominantly heavy doping, aims to optimize carrier concentration and restrain lattice thermal conductivity. However, this tactic can severely hamper carrier transport due to pronounced point defect scattering, particularly in materials with inherently low carrier mean-free-path. Conversely, dilute doping, although minimally affecting carrier mobility, frequently fails to optimize other vital thermoelectric parameters. Herein, we present a more nuanced dilute doping strategy in GeTe, leveraging the multifaceted roles of small-size metal atoms. A mere 4% CuPbSbTe3 introduction into GeTe swiftly suppresses rhombohedral distortion and optimizes carrier concentration through the aid of Cu interstitials. Additionally, the formation of multiscale microstructures, including zero-dimensional Cu interstitials, one-dimensional dislocations, two-dimensional planar defects, and three-dimensional nanoscale amorphous GeO2 and Cu2GeTe3 precipitates, along with the ensuing lattice softening, contributes to an ultralow lattice thermal conductivity. Intriguingly, dilute CuPbSbTe3 doping incurs only a marginal decrease in carrier mobility. Subsequent trace Cd doping, employed to alleviate the bipolar effect and align the valence bands, yields an impressive figure-of-merit of 2.03 at 623 K in (Ge0.97Cd0.03Te)0.96(CuPbSbTe3)0.04. This leads to a high energy-conversion efficiency of 7.9% and a significant power density of 3.44 W cm-2 at a temperature difference of 500 K. These results underscore the invaluable insights gained into the constructive role of nuanced dilute doping in the concurrent tuning of carrier and phonon transport in GeTe and other thermoelectric materials.

8.
Proc Natl Acad Sci U S A ; 121(14): e2318777121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38547057

ABSTRACT

A concept of solar energy convertible zinc-air battery (SZAB) is demonstrated through rational design of an electrode coupled with multifunction. The multifunctional electrode is fabricated using nitrogen-substituted graphdiyne (N-GDY) with large π-conjugated carbonous network, which can work as photoresponsive bifunctional electrocatalyst, enabling a sunlight-promoted process through efficient injection of photoelectrons into the conduction band of N-GDY. SZAB enables direct conversion and storage of solar energy during the charging process. Such a battery exhibits a lowered charge voltage under illumination, corresponding to a high energy efficiency of 90.4% and electric energy saving of 30.3%. The battery can display a power conversion efficiency as high as 1.02%. Density functional theory calculations reveal that the photopromoted oxygen evolution reaction kinetics originates from the transition from the alkyne bonds to double bonds caused by the transfer of excited electrons, which changes the position of highest occupied molecular orbital and lowest unoccupied molecular orbital, thus greatly promoting the formation of intermediates to the conversion process. Our findings provide conceptual and experimental confirmation that batteries are charged directly from solar energy without the external solar cells, providing a way to manufacture future energy devices.

9.
Adv Healthc Mater ; 13(14): e2400047, 2024 06.
Article in English | MEDLINE | ID: mdl-38364079

ABSTRACT

The presence of multidrug-resistant bacteria has challenged the clinical treatment of bacterial infection. There is a real need for the development of novel biocompatible materials with broad-spectrum antimicrobial activities. Antimicrobial hydrogels show great potential in infected wound healing but are still being challenged. Herein, broad-spectrum antibacterial and mechanically tunable amyloid-based hydrogels based on self-assembly and local mineralization of silver nanoparticles are reported. The mineralized hydrogels are biocompatible and have the advantages of sustained release of silver, prolonged antimicrobial effect, and improved adhesion capacity. Moreover, the mineralized hydrogels display a significant antimicrobial effect against both Gram-positive and Gram-negative bacteria in cells and mice by inducing membrane damage and reactive oxygen species toxicity in bacteria. In addition, the mineralized hydrogels can rapidly accelerate wound healing by the synergy between their antibacterial activity and intrinsic improvement for cell proliferation and migration. This study provides a modular approach to developing a multifunctional protein hydrogel platform based on biomolecule-coordinated self-assembly for a wide range of biomedical applications.


Subject(s)
Anti-Bacterial Agents , Cell Proliferation , Hydrogels , Silver , Wound Healing , Silver/chemistry , Silver/pharmacology , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Wound Healing/drug effects , Cell Proliferation/drug effects , Mice , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/chemistry , Humans , Reactive Oxygen Species/metabolism , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
10.
Small ; 20(6): e2305655, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37771195

ABSTRACT

Na2 Ti3 O7 is considered one of the most promising anode materials for sodium ion batteries due to its superior safety, environmental friendliness, and low manufacturing cost. However, its structural stability and reaction mechanism still have not been fully explored. As the electron beam irradiation introduces a similar impact on the Na2 Ti3 O7 anode as the extraction of Na+ ions during the battery discharge process, the microstructure evolution of the materials is investigated by advanced electron microscopy techniques at the atomic scale. Anisotropic amorphization is successfully observed. Through the integrated differential phase contrast-scanning transmission electron microscopy technique and density functional theory calculation, a phase transition pathway involving a new phase, Na2 Ti24 O49 , is proposed with the reduction of Na atoms. Additionally, it is found that the amorphization is dominated by the surface energy and electron dose rate. These findings will deepen the understanding of structural stability and deintercalation mechanism of the Na2 Ti3 O7 anode, providing new insight into exploring the failure mechanism of electrode materials.

11.
J Am Chem Soc ; 146(1): 892-900, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38151507

ABSTRACT

Layered compounds characterized by van der Waals gaps are often associated with relatively weak interlayer particle interactions. However, in specific scenarios, these seemingly feeble forces can exert an impact on interlayer interactions through subtle energy fluctuations, which can give rise to a diverse range of physical and chemical properties, particularly intriguing in the context of thermal transport. In this study, taking a natural superlattice composed of alternately stacked PbS and SnS2 sublayers as a model, we proposed that in a superlattice, there is strong hybridization between acoustic phonons of heavy sublayers and optical phonons of light sublayers. We identified newly generated vibration modes in the superlattice, such as interlayer shear and breathing, which exhibit lower sound velocity and contribute less to heat transport compared to their parent materials, which significantly alters the thermal behaviors of the superlattice compared to its bulk counterparts. Our findings on the behavior of interlayer phonons in superlattices not only can shed light on developing functional materials with enhanced thermal dissipation capabilities but also contribute to the broader field of condensed matter physics, offering insights into various fields, including thermoelectrics and phononic devices, and may pave the way for technological advancements in these areas.

12.
Nano Lett ; 23(24): 11818-11826, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38078871

ABSTRACT

An atomic-scale understanding of the role of nonperiodic features is essential to the rational design of highly Li-ion-conductive solid electrolytes. Unfortunately, most solid electrolytes are easily damaged by the intense electron beam needed for atomic-resolution electron microscopy observation, so the reported in-depth atomic-scale studies are limited to Li0.33La0.56TiO3- and Li7La3Zr2O12-based materials. Here, we observe on an atomic scale a third type of solid electrolyte, Li1.3Al0.3Ti1.7(PO4)3 (LATP), through minimization of damage induced by specimen preparation. With this capability, LATP is found to contain large amounts of twin boundaries with an unusual asymmetric atomic configuration. On the basis of the experimentally determined structure, the theoretical calculations suggest that such asymmetric twin boundaries may considerably promote Li-ion transport. This discovery identifies a new entry point for optimizing ionic conductivity, and the method presented here will also greatly benefit the mechanistic study of solid electrolytes.

13.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-38081290

ABSTRACT

Vortex dynamics has attracted tremendous attention for both fundamental physics and applications of type-II superconductors. However, methods to detect local vortex motion or vortex jump with high sensitivity are still scarce. Here, we fabricated soft point contacts on the clean layered superconductor 2H-NbSe2, which are demonstrated to contain multiple parallel micro-constrictions by scanning electronic microscopy. Andreev reflection spectroscopy was then studied in detail for the contacts. Differential conductance taken at fixed bias voltages was discovered to vary spontaneously over time in various magnetic fields perpendicular to the sample surface. The conductance variations become invisible when the field is zero or large enough, or parallel to the sample surface, which can be identified as the immediate consequence of vortex motion across a finite number of micro-constrictions. These results demonstrate point contact Andreev reflection spectroscopy to be a new potential way with a high time resolution to study the vortex dynamics in type-II superconductors.

14.
Inorg Chem ; 62(51): 21257-21264, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38069815

ABSTRACT

Phase engineering synthesis strategy is extremely challenging to achieve stable metallic phase molybdenum diselenide for a better physicochemical property than the thermodynamically stable semiconducting phase. Herein, we introduce tungsten atom clusters into the MoSe2 layered structure, realizing the phase transition from the 2H semiconductor to 1T metallic phase at a high temperature. The combination of synchrotron radiation X-ray absorption spectroscopy, Cs-corrected transmission electron microscopy, and theoretical calculation demonstrates that the aggregation doping of W atoms is the factor of MoSe2 structure transformation. When utilizing this distinct structure as an anode component, it demonstrates outstanding rate capability and durability. After 500 cycles, this results in a specific capacity of 1007.4 mAh g-1 at 500 mA g-1. These discoveries could open the door for the future development of high-performance anodes for ion battery applications.

15.
Nanotechnology ; 35(5)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37890477

ABSTRACT

Multi-shell transition metal oxide hollow spheres show great potential for applications in energy storage because of their unique multilayered hollow structure with large specific surface area, short electron and charge transport paths, and structural stability. In this paper, the controlled synthesis of NiCo2O4, MnCo2O4, NiMn2O4multi-shell layer structures was achieved by using the solvothermal method. As the anode materials for Li-ion batteries, the three multi-shell structures maintained good stability after 650 long cycles in the cyclic charge/discharge test. Thein situtransmisssion electron microscope characterization combined with cyclic voltammetry tests demonstrated that the three anode materials NiCo2O4, MnCo2O4and NiMn2O4have similar charge/discharge transition mechanisms, and the multi-shell structure can effectively buffer the volume expansion and structural collapse during lithium embedding/delithiation to ensure the stability of the electrode structure and cycling performance. The research results can provide effective guidance for the synathesis and charging/discharging mechanism of multi-shell metal oxide lithium-ion battery anode materials.

16.
Mater Horiz ; 10(11): 5053-5059, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37655791

ABSTRACT

Ammonia (NH3) plays a crucial role in the production of fertilizers, medicines, fibers, etc., which are closely relevant to the development of human society. However, the inert and nonpolar properties of NN seriously hinder artificial nitrogen fixation under mild conditions. Herein, we introduce a novel strategy to enhance the photocatalytic efficiency of N2 fixation through the directional polarization of N2 by rare earth metal atoms, which act as a local "electron transfer bridge." This bridge facilitates the transfer of delocalized electrons to the distal N atom and redirects the polarization of adsorbed N2 molecules. Taking cerium doped BiOCl (Ce-BiOCl) as an example, our results reveal that the electrons transfer to the distal N atom through the cerium atom, resulting in absorbed nitrogen molecular polarization. Consequently, the polarized nitrogen molecules exhibit an easier trend for NN cleavage and the subsequent hydrogenation process, and exhibit a greatly enhanced photocatalytic ammonia production rate of 46.7 µmol g-1 h-1 in cerium doped BiOCl, nearly 4 times higher than that of pure BiOCl. The original concept of directional polarization of N2 presented in this work not only deepens our understanding of the N2 molecular activation mechanism but also broadens our horizons for designing highly efficient catalysts for N2 fixation.

17.
Nanoscale ; 15(33): 13718-13727, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37577754

ABSTRACT

In situ liquid phase transmission electron microscopy (TEM) and three-dimensional electron tomography are powerful tools for investigating the growth mechanism of MOFs and understanding the factors that influence their particle morphology. However, their combined application to the study of MOF etching dynamics is limited due to the challenges of the technique such as sample preparation, limited field of view, low electron density, and data analysis complexity. In this research, we present a study employing in situ liquid phase TEM to investigate the etching mechanism of colloidal zeolitic imidazolate framework (ZIF) nanoparticles. The etching process involves two distinct stages, resulting in the development of porous structures as well as partially and fully hollow morphologies. The etching process is induced by exposure to an acid solution, and both in situ and ex situ experiments demonstrate that the outer layer etches faster leading to overall volume shrinking (stage I) while the inner layer etches faster giving a hollow morphology (stage II), although both the outer layer and inner layer have been etched in the whole process. 3D electron tomography was used to quantify the properties of the hollow structures which show that the ZIF-67 crystal etching rate is larger than that of the ZIF-8 crystal at the same pH value. This study provides valuable insights into MOF particle morphology control and can lead to the development of novel MOF-based materials with tailored properties for various applications.

18.
Research (Wash D C) ; 6: 0123, 2023.
Article in English | MEDLINE | ID: mdl-37287891

ABSTRACT

Seeking new strategies to tune the intrinsic defect and optimize the thermoelectric performance via no or less use of external doped elements (i.e., plain optimization) is an important method to realize the sustainable development of thermoelectric materials. Meanwhile, creating dislocation defects in oxide systems is quite challenging because the rigid and stiff ionic/covalent bonds can hardly tolerate the large strain energy associated with dislocations. Herein, taking BiCuSeO oxide as an example, the present work reports a successful construction of dense lattice dislocations in BiCuSeO by self-doping of Se at the O site (i.e., SeO self-substitution), and achieves plain optimization of the thermoelectric properties with only external Pb doping. Owing to the self-substitution-induced large lattice distortion and the potential reinforcement effect by Pb doping, high-density (about 3.0 × 1014 m-2) dislocations form in the grains, which enhances the scattering strength of mid-frequency phonon and results in a substantial low lattice thermal conductivity of 0.38 W m-1 K-1 at 823 K in Pb-doped BiCuSeO. Meanwhile, PbBi doping and Cu vacancy markedly improve the electrical conductivity while maintaining a competitively high Seebeck coefficient, thereby contributing to a highest power factor of 942 µW m-1 K-2. Finally, a remarkably enhanced zT value of 1.32 is obtained at 823 K in Bi0.94Pb0.06Cu0.97Se1.05O0.95 with almost compositional plainification. The high-density dislocation structure reported in this work will also provide a good inspiration for the design and construction of dislocations in other oxide systems.

19.
Adv Sci (Weinh) ; 10(23): e2302086, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37271926

ABSTRACT

Half-Heusler compounds with semiconducting behavior have been developed as high-performance thermoelectric materials for power generation. Many half-Heusler compounds also exhibit metallic behavior without a bandgap and thus inferior thermoelectric performance. Here, taking metallic half-Heusler MgNiSb as an example, a bandgap opening strategy is proposed by introducing the d-d orbital interactions, which enables the opening of the bandgap and the improvement of the thermoelectric performance. The width of the bandgap can be engineered by tuning the strength of the d-d orbital interactions. The conduction type and the carrier density can also be modulated in the Mg1- x Tix NiSb system. Both improved n-type and p-type thermoelectric properties are realized, which are much higher than that of the metallic MgNiSb. The proposed bandgap opening strategy can be employed to design and develop new half-Heusler semiconductors for functional and energy applications.

20.
Small ; 19(39): e2302457, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37263990

ABSTRACT

The recently developed defective 19-electron half-Heusler (HH) compounds, represented by Nb1- δ CoSb, possess massive intrinsic vacancies at the cation site and thus intrinsically low lattice thermal conductivity that is desirable for thermoelectric (TE) applications. Yet the TE performance of defective HHs with a maximum figure of merit (zT) <1.0 is still inferior to that of the conventional 18-electron ones. Here, a peak zT exceeding unity is obtained at 1123 K for both Nb0.7 Ta0.13 CoSb and Nb0.6 Ta0.23 CoSb, a benchmark value for defective 19-electron HHs. The improved zT results from the achievement of selective scatterings of phonons and electrons in defective Nb0.83 CoSb, using lanthanide contraction as a design factor to select alloying elements that can strongly impede the phonon propagation but weakly disturb the periodic potential. Despite the massive vacancies induced strong point defect scattering of phonons in Nb0.83 CoSb, Ta alloying is still found effective in suppressing lattice thermal conductivity while maintaining the carrier mobility almost unchanged. In comparison, V alloying significantly deteriorates the carrier transport and thus the TE performance. These results enlarge the category of high-performance HH TE materials beyond the conventional 18-electron ones and highlight the effectiveness of selective scatterings of phonons and electrons in developing TE materials even with massive vacancies.

SELECTION OF CITATIONS
SEARCH DETAIL
...