Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Commun ; 12(1): 7246, 2021 12 13.
Article in English | MEDLINE | ID: mdl-34903739

ABSTRACT

Spinach is a nutritious leafy vegetable belonging to the family Chenopodiaceae. Here we report a high-quality chromosome-scale reference genome assembly of spinach and genome resequencing of 305 cultivated and wild spinach accessions. Reconstruction of ancestral Chenopodiaceae karyotype indicates substantial genome rearrangements in spinach after its divergence from ancestral Chenopodiaceae, coinciding with high repeat content in the spinach genome. Population genomic analyses provide insights into spinach genetic diversity and population differentiation. Genome-wide association studies of 20 agronomical traits identify numerous significantly associated regions and candidate genes for these traits. Domestication sweeps in the spinach genome are identified, some of which are associated with important traits (e.g., leaf phenotype, bolting and flowering), demonstrating the role of artificial selection in shaping spinach phenotypic evolution. This study provides not only insights into the spinach evolution and domestication but also valuable resources for facilitating spinach breeding.


Subject(s)
Domestication , Genome, Plant/genetics , Spinacia oleracea/genetics , Vegetables/genetics , Chenopodiaceae/genetics , Chromosomes, Plant/genetics , Genetic Variation , Genomics , Karyotype , Phenotype , Phylogeny , Plant Breeding
3.
Database (Oxford) ; 20192019 01 01.
Article in English | MEDLINE | ID: mdl-31211398

ABSTRACT

Spinach (Spinacia oleracea L.) is a nutritious vegetable enriched with many essential minerals and vitamins. A reference spinach genome has been recently released, and additional spinach genomic resources are being rapidly developed. Therefore, there is an urgent need of a central database to store, query, analyze and integrate various resources of spinach genomic data. To this end, we developed SpinachBase (http://spinachbase.org), which provides centralized public accesses to genomic data as well as analytical tools to assist research and breeding in spinach. The database currently stores the spinach reference genome sequence, and sequences and comprehensive functional annotations of protein-coding genes predicted from the genome. The database also contains gene expression profiles derived from RNA-Seq experiments as well as highly co-expressed genes and genetic variants called from transcriptome sequences of 120 cultivated and wild Spinacia accessions. Biochemical pathways have been predicted from spinach protein-coding genes and are available through a pathway database (SpinachCyc) within SpinachBase. SpinachBase provides a suite of analysis and visualization tools including a genome browser, sequence similarity searches with BLAST, functional enrichment and functional classification analyses and functions to query and retrieve gene sequences and annotations.


Subject(s)
Databases, Genetic , Gene Expression Profiling , Genome, Plant , Plant Proteins , Spinacia oleracea , Genomics , Plant Proteins/biosynthesis , Plant Proteins/genetics , RNA-Seq , Spinacia oleracea/genetics , Spinacia oleracea/metabolism
4.
Molecules ; 23(6)2018 May 27.
Article in English | MEDLINE | ID: mdl-29861493

ABSTRACT

Spinach (Spinacia oleracea L.) is one of most important leafy vegetables because of its high nutritional value and high oxalate content, which can be toxic with negative effects on human nutrition. Ammonium and nitrate can effectively regulate oxalate accumulation, although the mechanisms underlying the oxalate biosynthesis and regulation are still undetermined in plants. In the present study, we identified 25 putative genes that are involved in the oxalate biosynthetic and degradation pathway, before analyzing the oxalate content and the expression levels of the corresponding proteins under normal growth conditions, with or without ammonium and nitrate treatments, using high and low oxalate-accumulated spinach genotypes. The two cultivars exhibited different profiles of total oxalate and soluble oxalate accumulation. The high oxalate concentrations in spinach were as a result of the high transcription levels of the genes that are involved in oxalate biosynthesis under normal growth conditions, such as SoGLO2, SoGLO3, three SoOXACs, SoMLS, SoMDH1, SoMDH2, and SoMDH4. The results revealed that the ammonium and nitrate were able to control the oxalate content in leaves, possibly because of the different transcription levels of the genes. The oxalate content is regulated by complex regulatory mechanisms and is varied in the different varieties of spinach. The results from this research may be used to assist the investigation of the mechanism of oxalate regulation and breeding for reduced oxalate content in spinach.


Subject(s)
Gene Expression Regulation, Plant , Metabolic Networks and Pathways , Spinacia oleracea/genetics , Spinacia oleracea/metabolism , Ammonium Compounds/metabolism , Gene Expression Profiling , Nitrates/metabolism , Oxalates/metabolism , Transcriptome
5.
Nat Commun ; 8: 15275, 2017 05 24.
Article in English | MEDLINE | ID: mdl-28537264

ABSTRACT

Spinach is an important leafy vegetable enriched with multiple necessary nutrients. Here we report the draft genome sequence of spinach (Spinacia oleracea, 2n=12), which contains 25,495 protein-coding genes. The spinach genome is highly repetitive with 74.4% of its content in the form of transposable elements. No recent whole genome duplication events are observed in spinach. Genome syntenic analysis between spinach and sugar beet suggests substantial inter- and intra-chromosome rearrangements during the Caryophyllales genome evolution. Transcriptome sequencing of 120 cultivated and wild spinach accessions reveals more than 420 K variants. Our data suggests that S. turkestanica is likely the direct progenitor of cultivated spinach and spinach domestication has a weak bottleneck. We identify 93 domestication sweeps in the spinach genome, some of which are associated with important agronomic traits including bolting, flowering and leaf numbers. This study offers insights into spinach evolution and domestication and provides resources for spinach research and improvement.


Subject(s)
Chromosomes, Plant/genetics , Evolution, Molecular , Genetic Variation , Genome, Plant/genetics , Spinacia oleracea/genetics , Beta vulgaris/genetics , Chromosome Mapping , DNA Transposable Elements/genetics , Phenotype , Phylogeny , Sequence Analysis, RNA , Synteny , Transcriptome , Whole Genome Sequencing
6.
J Virol ; 91(11)2017 06 01.
Article in English | MEDLINE | ID: mdl-28331089

ABSTRACT

Tomato is a major vegetable crop that has tremendous popularity. However, viral disease is still a major factor limiting tomato production. Here, we report the tomato virome identified through sequencing small RNAs of 170 field-grown samples collected in China. A total of 22 viruses were identified, including both well-documented and newly detected viruses. The tomato viral community is dominated by a few species, and they exhibit polymorphisms and recombination in the genomes with cold spots and hot spots. Most samples were coinfected by multiple viruses, and the majority of identified viruses are positive-sense single-stranded RNA viruses. Evolutionary analysis of one of the most dominant tomato viruses, Tomato yellow leaf curl virus (TYLCV), predicts its origin and the time back to its most recent common ancestor. The broadly sampled data have enabled us to identify several unreported viruses in tomato, including a completely new virus, which has a genome of ∼13.4 kb and groups with aphid-transmitted viruses in the genus Cytorhabdovirus Although both DNA and RNA viruses can trigger the biogenesis of virus-derived small interfering RNAs (vsiRNAs), we show that features such as length distribution, paired distance, and base selection bias of vsiRNA sequences reflect different plant Dicer-like proteins and Argonautes involved in vsiRNA biogenesis. Collectively, this study offers insights into host-virus interaction in tomato and provides valuable information to facilitate the management of viral diseases.IMPORTANCE Tomato is an important source of micronutrients in the human diet and is extensively consumed around the world. Virus is among the major constraints on tomato production. Categorizing virus species that are capable of infecting tomato and understanding their diversity and evolution are challenging due to difficulties in detecting such fast-evolving biological entities. Here, we report the landscape of the tomato virome in China, the leading country in tomato production. We identified dozens of viruses present in tomato, including both well-documented and completely new viruses. Some newly emerged viruses in tomato were found to spread fast, and therefore, prompt attention is needed to control them. Moreover, we show that the virus genomes exhibit considerable degree of polymorphisms and recombination, and the virus-derived small interfering RNA (vsiRNA) sequences indicate distinct vsiRNA biogenesis mechanisms for different viruses. The Chinese tomato virome that we developed provides valuable information to facilitate the management of tomato viral diseases.


Subject(s)
Begomovirus/genetics , Evolution, Molecular , Genetic Variation , Plant Leaves/virology , Plant Viruses/genetics , Plant Viruses/isolation & purification , Solanum lycopersicum/virology , Animals , Aphids/virology , China , Genome, Viral , Host-Pathogen Interactions , Plant Diseases/prevention & control , Plant Diseases/virology , RNA, Small Interfering/genetics , RNA, Viral/genetics , Rhabdoviridae/genetics , Rhabdoviridae/isolation & purification , Sequence Analysis, RNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...