Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 12085, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802459

ABSTRACT

The co-existence of inflammatory bowel disease (IBD) and non-alcoholic steatohepatitis (NASH) has raised interest in identifying shared molecular mechanisms and potential therapeutic targets. However, the relationship between these two diseases remains unclear and effective medical treatments are still lacking. Through the bioinformatics analysis in this study, 116 shared differentially expressed genes (SDEGs) were identified between IBD and NASH datasets. GO and KEGG pathway analyses revealed significant involvement of SDEGs in apoptotic processes, cell death, defense response, cytokine and chemokine activity, and signaling pathways. Furthermore, weighted gene co-expression network analysis (WGCNA) identified five shared signature genes associated specifically with IBD and NASH, they were CXCL9, GIMAP2, ADAMTS5, GRAP, and PRF1. These five genes represented potential diagnostic biomarkers for distinguishing patients with diseases from healthy individuals by using two classifier algorithms and were positively related to autophagy, ferroptosis, angiogenesis, and immune checkpoint factors in the two diseases. Additionally, single-cell analysis of IBD and NASH samples highlighted the expression of regulatory genes in various immune cell subtypes, emphasizing their significance in disease pathogenesis. Our work elucidated the shared signature genes and regulatory mechanisms of IBD and NASH, which could provide new potential therapies for patients with IBD and NASH.


Subject(s)
Computational Biology , Gene Regulatory Networks , Inflammatory Bowel Diseases , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Computational Biology/methods , Gene Expression Profiling , Chemokine CXCL9/genetics , Chemokine CXCL9/metabolism , Biomarkers , Transcriptome , Gene Expression Regulation
5.
Nat Commun ; 14(1): 6384, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37821436

ABSTRACT

Currently potential preclinical drugs for the treatment of nonalcoholic steatohepatitis (NASH) and NASH-related pathopoiesis have failed to achieve expected therapeutic efficacy due to the complexity of the pathogenic mechanisms. Here we show Tripartite motif containing 26 (TRIM26) as a critical endogenous suppressor of CCAAT/enhancer binding protein delta (C/EBPδ), and we also confirm that TRIM26 is an C/EBPδ-interacting partner protein that catalyses the ubiquitination degradation of C/EBPδ in hepatocytes. Hepatocyte-specific loss of Trim26 disrupts liver metabolic homeostasis, followed by glucose metabolic disorder, lipid accumulation, increased hepatic inflammation, and fibrosis, and dramatically facilitates NASH-related phenotype progression. Inversely, transgenic Trim26 overexpression attenuates the NASH-associated phenotype in a rodent or rabbit model. We provide mechanistic evidence that, in response to metabolic insults, TRIM26 directly interacts with C/EBPδ and promotes its ubiquitin proteasome degradation. Taken together, our present findings identify TRIM26 as a key suppressor over the course of NASH development.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Rabbits , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/prevention & control , Signal Transduction , Ubiquitination , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
6.
Adv Sci (Weinh) ; 10(28): e2302130, 2023 10.
Article in English | MEDLINE | ID: mdl-37544908

ABSTRACT

Underestimation of the complexity of pathogenesis in nonalcoholic steatohepatitis (NASH) significantly encumbers development of new drugs and targeted therapy strategies. Inactive rhomboid protein 2 (IRHOM2) has a multifunctional role in regulating inflammation, cell survival, and immunoreaction. Although cytokines and chemokines promote IRHOM2 trafficking or cooperate with partner factors by phosphorylation or ubiquitin ligases-mediated ubiquitination to perform physiological process, it remains unknown whether other regulators induce IRHOM2 activation via different mechanisms in NASH progression. Here the authors find that IRHOM2 is post-translationally S-palmitoylated at C476 in iRhom homology domain (IRHD), which facilitates its cytomembrane translocation and stabilization. Fatty-acids challenge can directly promote IRHOM2 trafficking by increasing its palmitoylation. Additionally, the authors identify Zinc finger DHHC-type palmitoyltransferase 3 (ZDHHC3) as a key acetyltransferase required for the IRHOM2 palmitoylation. Fatty-acids administration enhances IRHOM2 palmitoylation by increasing the direct association between ZDHHC3 and IRHOM2, which is catalyzed by the DHHC (C157) domain of ZDHHC3. Meanwhile, a metabolic stresses-triggered increase of ZDHHC3 maintains palmitoylated IRHOM2 accumulation by blocking its ubiquitination, consequently suppressing its ubiquitin-proteasome-related degradation mediated by tripartite motif containing 31 (TRIM31). High-levels of ZDHHC3 protein abundance positively correlate with the severity of NASH phenotype in patient samples. Hepatocyte-specific dysfunction of ZDHHC3 significantly inhibits palmitoylated IRHOM2 deposition, therefore suppressing the fatty-acids-mediated hepatosteatosis and inflammation in vitro, as well as NASH pathological phenotype induced by two different high-energy diets (HFHC & WTDF) in the in vivo rodent and rabbit model. Inversely, specific restoration of ZDHHC3 in hepatocytes markedly provides acceleration over the course of NASH development via increasing palmitoylation of IRHOM2 along with suppression of ubiquitin degradation. The current work uncovers that ZDHHC3-induced palmitoylation is a novel regulatory mechanism and signal that regulates IRHOM2 trafficking, which confers evidence associating the regulation of palmitoylation with NASH progression.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Humans , Rabbits , Lipoylation , Inflammation/metabolism , Phosphorylation , Fatty Acids , Ubiquitins/metabolism , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
7.
Acta Pharm Sin B ; 13(3): 1071-1092, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36970206

ABSTRACT

Nowadays potential preclinical drugs for the treatment of nonalcoholic steatohepatitis (NASH) have failed to achieve expected therapeutic efficacy because the pathogenic mechanisms are underestimated. Inactive rhomboid protein 2 (IRHOM2), a promising target for treatment of inflammation-related diseases, contributes to deregulated hepatocyte metabolism-associated nonalcoholic steatohepatitis (NASH) progression. However, the molecular mechanism underlying Irhom2 regulation is still not completely understood. In this work, we identify the ubiquitin-specific protease 13 (USP13) as a critical and novel endogenous blocker of IRHOM2, and we also indicate that USP13 is an IRHOM2-interacting protein that catalyzes deubiquitination of Irhom2 in hepatocytes. Hepatocyte-specific loss of the Usp13 disrupts liver metabolic homeostasis, followed by glycometabolic disorder, lipid deposition, increased inflammation, and markedly promotes NASH development. Conversely, transgenic mice with Usp13 overexpression, lentivirus (LV)- or adeno-associated virus (AAV)-driven Usp13 gene therapeutics mitigates NASH in 3 models of rodent. Mechanistically, in response to metabolic stresses, USP13 directly interacts with IRHOM2 and removes its K63-linked ubiquitination induced by ubiquitin-conjugating enzyme E2N (UBC13), a ubiquitin E2 conjugating enzyme, and thus prevents its activation of downstream cascade pathway. USP13 is a potential treatment target for NASH therapy by targeting the Irhom2 signaling pathway.

8.
Hepatology ; 77(1): 124-143, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35429173

ABSTRACT

BACKGROUND AIMS: As a global health threat, NASH has been confirmed to be a chronic progressive liver disease that is strongly associated with obesity. However, no approved drugs or efficient therapeutic strategies are valid, mainly because its complicated pathological processes is underestimated. APPROACH RESULTS: We identified the RING-type E3 ubiquitin transferase-tripartite motif-containing protein 31 (TRIM31), a member of the E3 ubiquitin ligases family, as an efficient endogenous inhibitor of transforming growth factor-beta-activated kinase 1 (mitogen-activated protein kinase kinase kinase 7; MAP3K7), and we further confirmed that TRIM31 is an MAP3K7-interacting protein and promotes MAP3K7 degradation by enhancing ubiquitination of K48 linkage in hepatocytes. Hepatocyte-specific Trim31 deletion blocks hepatic metabolism homeostasis, concomitant with glucose metabolic syndrome, lipid accumulation, up-regulated inflammation, and dramatically facilitates NASH progression. Inversely, transgenic overexpression, lentivirus, or adeno-associated virus-mediated Trim31 gene therapy restrain NASH in three dietary mice models. Mechanistically, in response to metabolic insults, TRIM31 interacts with MAP3K7 and conjugates K48-linked ubiquitination chains to promote MAP3K7 degradation, thus blocking MAP3K7 abundance and its downstream signaling cascade activation in hepatocytes. CONCLUSIONS: TRIM31 may serve as a promising therapeutic target for NASH treatment and associated metabolic disorders.


Subject(s)
Non-alcoholic Fatty Liver Disease , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Animals , Mice , MAP Kinase Kinase Kinases/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Humans , Tripartite Motif Proteins/metabolism
9.
Int Immunopharmacol ; 113(Pt B): 109395, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36375322

ABSTRACT

Obesity is a major predictive factor for the diabetic nephropathy (DN). However, the precise mechanism and therapeutic approach still require to be investigated. Cynapanosides A (CPS-A) is a glycoside derived from the Chinese drug Cynanchum paniculatum that has numerous pharmacological activities, but its regulatory function on obesity-induced kidney disease is still obscure. In the present study, we attempted to explore the renoprotective effects of CPS-A on the established DN in high fat diet (HFD)-fed mice, and the underlying mechanisms. We initially found that CPS-A significantly ameliorated the obesity and metabolic syndrome in mice with HFD feeding. Mice with HFD-induced DN exerted renal dysfunctions, indicated by the elevated functional parameters, including up-regulated blood urea nitrogen (BUN), urine albumin and creatinine, which were significantly attenuated by CPS-A in obese mice. Moreover, histological changes including glomerular enlargement, sclerosis index and collagen deposition in kidney of obese mice were detected, while being strongly ameliorated by CPS-A. Additionally, podocyte loss induced by HFD was also markedly mitigated in mice with CPS-A supplementation. HFD feeding also led to lipid deposition and inflammatory response in renal tissues of obese mice, whereas being considerably attenuated after CPS-A consumption. Intriguingly, we found that tripartite motif-containing protein 31 (TRIM31) signaling might be a crucial mechanism for CPS-A to perform its renoprotective functions in mice with DN. The anti-inflammatory, anti-fibrotic and anti-dyslipidemia capacities of CPS-A were confirmed in the mouse podocytes under varying metabolic stresses, which were however almost abolished upon TRIM31 ablation. These data elucidated that TRIM31 expression was largely required for CPS-A to perform its renoprotective effects. Collectively, our study is the first to reveal that CPS-A may be a promising therapeutic strategy for the treatment of obesity-induced DN or associated kidney disease.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Podocytes , Mice , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Mice, Obese , Fibrosis , Inflammation/metabolism , Obesity/complications , Obesity/drug therapy , Obesity/metabolism , Lipids/therapeutic use , Mice, Inbred C57BL , Diabetes Mellitus/pathology
10.
Nat Commun ; 13(1): 5945, 2022 10 08.
Article in English | MEDLINE | ID: mdl-36209205

ABSTRACT

Nonalcoholic steatohepatitis (NASH), a common clinical disease, is becoming a leading cause of hepatocellular carcinoma (HCC). Dual specificity phosphatase 22 (DUSP22, also known as JKAP or JSP-1) expressed in numerous tissues plays essential biological functions in immune responses and tumor growth. However, the effects of DUSP22 on NASH still remain unknown. Here, we find a significant decrease of DUSP22 expression in human and murine fatty liver, which is mediated by reactive oxygen species (ROS) generation. Hepatic-specific DUSP22 deletion particularly exacerbates lipid deposition, inflammatory response and fibrosis in liver, facilitating NASH and non-alcoholic fatty liver disease (NAFLD)-associated HCC progression. In contrast, transgenic over-expression, lentivirus or adeno-associated virus (AAV)-mediated DUSP22 gene therapy substantially inhibit NASH-related phenotypes and HCC development in mice. We provide mechanistic evidence that DUSP22 directly interacts with focal adhesion kinase (FAK) and restrains its phosphorylation at Tyr397 (Y397) and Y576 + Y577 residues, subsequently prohibiting downstream activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and nuclear factor-κB (NF-κB) cascades. The binding of DUSP22 to FAK and the dephosphorylation of FAK are indispensable for DUSP22-meliorated NASH progression. Collectively, our findings identify DUSP22 as a key suppressor of NASH-HCC, and underscore the DUSP22-FAK axis as a promising therapeutic target for treatment of the disease.


Subject(s)
Carcinoma, Hepatocellular , Dual-Specificity Phosphatases/metabolism , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Carcinoma, Hepatocellular/metabolism , Disease Progression , Dual-Specificity Phosphatases/genetics , Focal Adhesion Protein-Tyrosine Kinases/genetics , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Hepatocytes/metabolism , Humans , Lipids , Liver/metabolism , Liver Neoplasms/metabolism , Mice , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase Phosphatases/genetics , Mitogen-Activated Protein Kinase Phosphatases/metabolism , NF-kappa B/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Reactive Oxygen Species/metabolism
11.
Redox Biol ; 51: 102274, 2022 05.
Article in English | MEDLINE | ID: mdl-35240537

ABSTRACT

Mulberrin (Mul) is a key component of the traditional Chinese medicine Romulus Mori with various biological functions. However, the effects of Mul on liver fibrosis have not been addressed, and thus were investigated in our present study, as well as the underlying mechanisms. Here, we found that Mul administration significantly ameliorated carbon tetrachloride (CCl4)-induced liver injury and dysfunction in mice. Furthermore, CCl4-triggerd collagen deposition and liver fibrosis were remarkably attenuated in mice with Mul supplementation through suppressing transforming growth factor ß1 (TGF-ß1)/SMAD2/3 signaling pathway. Additionally, Mul treatments strongly restrained the hepatic inflammation in CCl4-challenged mice via blocking nuclear factor-κB (NF-κB) signaling. Importantly, we found that Mul markedly increased liver TRIM31 expression in CCl4-treated mice, accompanied with the inactivation of NOD-like receptor protein 3 (NLRP3) inflammasome. CCl4-triggered hepatic oxidative stress was also efficiently mitigated by Mul consumption via improving nuclear factor E2-related factor 2 (Nrf2) activation. Our in vitro studies confirmed that Mul reduced the activation of human and mouse primary hepatic stellate cells (HSCs) stimulated by TGF-ß1. Consistently, Mul remarkably retarded the inflammatory response and reactive oxygen species (ROS) accumulation both in human and murine hepatocytes. More importantly, by using hepatocyte-specific TRIM31 knockout mice (TRIM31Hep-cKO) and mouse primary hepatocytes with Nrf2-knockout (Nrf2KO), we identified that the anti-fibrotic and hepatic protective effects of Mul were TRIM31/Nrf2 signaling-dependent, relieving HSCs activation and liver fibrosis. Therefore, Mul-ameliorated hepatocyte injury contributed to the suppression of HSCs activation by improving TRIM31/Nrf2 axis, thus providing a novel therapeutic strategy for hepatic fibrosis treatment.


Subject(s)
NF-E2-Related Factor 2 , Transforming Growth Factor beta1 , Animals , Benzene Derivatives , Carbon Tetrachloride/toxicity , Hepatic Stellate Cells/metabolism , Liver/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/prevention & control , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Signal Transduction , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/pharmacology
12.
Nat Commun ; 13(1): 1052, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35217669

ABSTRACT

Systemic metabolic syndrome significantly increases the risk of morbidity and mortality in patients with non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). However, no effective therapeutic strategies are available, practically because our understanding of its complicated pathogenesis is poor. Here we identify the tripartite motif-containing protein 31 (Trim31) as an endogenous inhibitor of rhomboid 5 homolog 2 (Rhbdf2), and we further determine that Trim31 directly binds to Rhbdf2 and facilitates its proteasomal degradation. Hepatocyte-specific Trim31 ablation facilitates NAFLD-associated phenotypes in mice. Inversely, transgenic or ex vivo gene therapy-mediated Trim31 gain-of-function in mice with NAFLD phenotypes virtually alleviates severe deterioration and progression of steatohepatitis. The current findings suggest that Trim31 is an endogenous inhibitor of Rhbdf2 and downstream cascades in the pathogenic process of steatohepatitis and that it may serve as a feasible therapeutical target for the treatment of NAFLD/NASH and associated metabolic disorders.


Subject(s)
Intracellular Signaling Peptides and Proteins , Non-alcoholic Fatty Liver Disease , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Animals , Carrier Proteins/metabolism , Hepatocytes/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Liver/metabolism , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
13.
Biomed Pharmacother ; 145: 112404, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34781143

ABSTRACT

Excessive fructose (Fru) consumption has been reported to favor nonalcoholic fatty liver disease (NAFLD). However, the molecular mechanism is still elusive, lacking effective therapeutic strategies. Carminic acid (CA), a glucosylated anthraquinone found in scale insects like Dactylopius coccus, exerts anti-tumor and anti-oxidant activities. Nevertheless, its regulatory role in Fru-induced NAFLD is still obscure. Here, the effects of CA on NAFLD in Fru-challenged mice and the underlying molecular mechanisms were explored. We found that Fru intake significantly led to insulin resistance and dyslipidemia in liver of mice, which were considerably attenuated by CA treatment through repressing endoplasmic reticulum (ER) stress. Additionally, inflammatory response induced by Fru was also attenuated by CA via the blockage of nuclear factor-κB (NF-κB), mitogen-activated protein kinases (MAPKs) and tumor necrosis factor α/TNF-α receptor (TNF-α/TNFRs) signaling pathways. Moreover, Fru-provoked oxidative stress in liver tissues was remarkably attenuated by CA mainly through improving the activation of nuclear factor erythroid 2-related factor 2 (Nrf-2). These anti-dyslipidemias, anti-inflammatory and anti-oxidant activities regulated by CA were confirmed in the isolated primary hepatocytes with Fru stimulation. Importantly, the in vitro experiments demonstrated that Fru-induced lipid accumulation was closely associated with inflammatory response and reactive oxygen species (ROS) production regulated by TNF-α and Nrf-2 signaling pathways, respectively. In conclusion, these results demonstrated that CA could be considered as a potential therapeutic strategy to attenuate metabolic disorder and NAFLD in Fru-challenged mice mainly through suppressing inflammatory response and oxidative stress.


Subject(s)
Carmine/pharmacology , Inflammation/drug therapy , Non-alcoholic Fatty Liver Disease/drug therapy , Oxidative Stress/drug effects , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Disease Models, Animal , Dyslipidemias/drug therapy , Fructose , Hepatocytes/drug effects , Hepatocytes/pathology , Inflammation/pathology , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology , Reactive Oxygen Species/metabolism
14.
Aging (Albany NY) ; 13(7): 10326-10353, 2021 04 04.
Article in English | MEDLINE | ID: mdl-33819919

ABSTRACT

Excessive fructose (Fru) intake has become an increased risk for chronic kidney disease progression. Despite extensive researches that have been performed to develop effective treatments against Fru-induced renal injury, the outcome has achieved limited success. In this study, we attempted to explore whether carminic acid (CA) could influence the progression of Fru-induced kidney injury, and the underlying molecular mechanism. At first, our in vitro results showed that CA significantly reduced inflammation in mouse tubular epithelial cells and human tubule epithelial cells stimulated by Fru. The anti-inflammatory effects of CA were associated with the blockage of nuclear factor-κB (NF-κB) signaling. In addition, Fru-exposed cells showed higher oxidative stress, which was effectively restrained by CA treatment through improving nuclear factor (erythroid-derived 2)-like 2 (Nrf-2) nuclear translocation. Importantly, we found that Fru-induced inflammation and oxidative stress were accelerated in cells with Nrf-2 knockdown. What's more, in Fru-stimulated cells, CA-alleviated inflammatory response and reactive oxygen species (ROS) production were evidently abolished by Nrf-2 knockdown. The in vivo analysis demonstrated that Fru led to metabolic disorder, excessive albuminuria and histologic changes in renal tissues, which were effectively reversed by CA supplementation. We confirmed that CA significantly reduced inflammation and oxidative stress in the kidneys of mice through regulating NF-κB and Nrf-2 signaling pathways, eventually alleviating the progression of chronic kidney injury. Taken together, these results identified CA as a potential therapeutic strategy for metabolic stress-induced renal injury through restraining inflammation and oxidative stress via the improvement of Nrf-2 signaling.


Subject(s)
Carmine/pharmacology , Fructose/toxicity , NF-E2-Related Factor 2/metabolism , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/metabolism , Animals , Cell Line , Humans , Inflammation/chemically induced , Inflammation/prevention & control , Kidney Tubules/drug effects , Male , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/drug effects , Oxidative Stress/drug effects , Protective Agents/pharmacology , Renal Insufficiency, Chronic/prevention & control , Signal Transduction/drug effects
15.
Int Immunopharmacol ; 95: 107340, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33667999

ABSTRACT

Obesity is an important factor implicated in chronic kidney disease (CKD). Juglanin (Jug) is a natural compound extracted from the crude Polygonumaviculare, showing anti-inflammatory and anti-diabetic effects. However, whether Jug has protective effects against obesity-induced renal injury, little has been investigated. Herein, we attempted to explore the potential of Jug in mediating obesity-induced kidney disease in high fat diet (HFD)-challenged mice. Our results suggested that chronic HFD feeding markedly increased the body weights of mice compared to the ones fed with normal chow diet (NCD), along with significant glucose intolerance and insulin resistance. However, these metabolic disorders induced by HFD were effectively alleviated by Jug treatments in a dose-dependent manner. Moreover, HFD-challenged mice showed apparent histopathological changes in renal tissues with significant collagen accumulation, which were attenuated by Jug supplementation. In addition, Jug treatment decreased the expression levels of kidney injury molecule-1 (KIM-1), while increased nephrin and podocin expression levels in kidney of HFD-challenged mice, improving the renal dysfunction. Furthermore, HFD led to lipid deposition in kidney samples of mice by enhancing abnormal lipid metabolism. In addition, HFD promoted the releases of circulating pro-inflammatory cytokines, and enhanced the renal inflammation by activating nuclear factor-kappa B/histone deacetylase 3 (NF-κB/HDAC3) signaling. HFD-induced dyslipidemia and inflammation were considerably abrogated by Jug administration in mice. The protective effects of Jug against renal injury were confirmed in palmitate (PA)-stimulated HK2 cells in vitro mainly through suppressing the nuclear translocation of NF-κB and HDAC3, repressing inflammation and lipid accumulation eventually. Hence, Jug could ameliorate HFD-induced kidney injury mainly through blocking the NF-κB/HDAC3 nuclear translocation.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Dyslipidemias/drug therapy , Glycosides/therapeutic use , Hypolipidemic Agents/therapeutic use , Kaempferols/therapeutic use , Kidney Diseases/drug therapy , Metabolic Syndrome/drug therapy , Animals , Anti-Inflammatory Agents/pharmacology , Cell Line , Cell Survival/drug effects , Diet, High-Fat , Dyslipidemias/metabolism , Dyslipidemias/pathology , Glycosides/pharmacology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Hypolipidemic Agents/pharmacology , Insulin Resistance , Kaempferols/pharmacology , Kidney/drug effects , Kidney/metabolism , Kidney Diseases/metabolism , Kidney Diseases/pathology , Lipid Metabolism/drug effects , Male , Metabolic Syndrome/metabolism , Metabolic Syndrome/pathology , Mice, Inbred C57BL , NF-kappa B/metabolism , Signal Transduction/drug effects
16.
Hepatology ; 73(4): 1346-1364, 2021 04.
Article in English | MEDLINE | ID: mdl-32592194

ABSTRACT

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD) has been widely recognized as a precursor to metabolic complications. Elevated inflammation levels are predictive of NAFLD-associated metabolic disorder. Inactive rhomboid-like protein 2 (iRhom2) is regarded as a key regulator in inflammation. However, the precise mechanisms by which iRhom2-regulated inflammation promotes NAFLD progression remain to be elucidated. APPROACH AND RESULTS: Here, we report that insulin resistance, hepatic steatosis, and specific macrophage inflammatory activation are significantly alleviated in iRhom2-deficient (knockout [KO]) mice, but aggravated in iRhom2 overexpressing mice. We further show that, mechanistically, in response to a high-fat diet (HFD), iRhom2 KO mice and mice with iRhom2 deficiency in myeloid cells only showed less severe hepatic steatosis and insulin resistance than controls. Inversely, transplantation of bone marrow cells from healthy mice to iRhom2 KO mice expedited the severity of insulin resistance and hepatic dyslipidemia. Of note, in response to HFD, hepatic iRhom2 binds to mitogen-activated protein kinase kinase kinase 7 (MAP3K7) to facilitate MAP3K7 phosphorylation and nuclear factor kappa B cascade activation, thereby promoting the activation of c-Jun N-terminal kinase/insulin receptor substrate 1 signaling, but disturbing AKT/glycogen synthase kinase 3ß-associated insulin signaling. The iRhom2/MAP3K7 axis is essential for iRhom2-regulated liver steatosis. CONCLUSIONS: iRhom2 may represent a therapeutic target for the treatment of HFD-induced hepatic steatosis and insulin resistance.


Subject(s)
Carrier Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Liver/metabolism , MAP Kinase Kinase Kinases/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Activation, Metabolic , Animals , Carrier Proteins/biosynthesis , Diet, High-Fat/adverse effects , Disease Models, Animal , Disease Progression , Fatty Liver/etiology , Fatty Liver/metabolism , Fatty Liver/physiopathology , Inflammation/metabolism , Inflammation/physiopathology , Insulin Resistance/physiology , Intracellular Signaling Peptides and Proteins/biosynthesis , Liver/physiopathology , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/physiopathology , Signal Transduction
17.
Redox Biol ; 36: 101645, 2020 09.
Article in English | MEDLINE | ID: mdl-32863207

ABSTRACT

Air pollution containing particulate matter (PM) less than 2.5 µm (PM2.5) plays an essential role in regulating hepatic disease. However, its molecular mechanism is not yet clear, lacking effective therapeutic strategies. In this study, we attempted to investigate the effects and mechanisms of PM2.5 exposure on hepatic injury by the in vitro and in vivo experiments. At first, we found that PM2.5 incubation led to a significant reduction of nuclear factor erythroid-derived 2-related factor 2 (Nrf2), along with markedly reduced expression of different anti-oxidants. Notably, suppressor of IKKε (SIKE), known as a negative regulator of the interferon pathway, was decreased in PM2.5-incubated cells, accompanied with increased activation of TANK-binding kinase 1 (TBK1) and nuclear factor-κB (NF-κB). The in vitro studies showed that Nrf2 positively regulated SIKE expression under the conditions with or without PM2.5. After PM2.5 treatment, Nrf2 knockdown further accelerated SIEK decrease and TBK1/NF-κB activation, and opposite results were observed in cells with Nrf2 over-expression. Subsequently, the gene loss- and gain-function analysis demonstrated that SIKE deficiency further aggravated inflammation and TBK1/NF-κB activation caused by PM2.5, which could be abrogated by SIKE over-expression. Importantly, SIKE-alleviated inflammation was mainly dependent on TBK1 activation. The in vivo studies confirmed that SIKE- and Nrf2-knockout mice showed significantly accelerated hepatic injury after long-term PM2.5 exposure through reducing inflammatory response and oxidative stress. Juglanin (Jug), mainly isolated from Polygonum aviculare, exhibits anti-inflammatory and anti-oxidant effects. We found that Jug could increase Nrf2 activation, and then up-regulated SIKE in cells and liver tissues, mitigating PM2.5-induced liver injury. Together, all these data demonstrated that Nrf2 might positively meditate SIKE to inhibit inflammatory and oxidative damage, ameliorating PM2.5-induced liver injury. Jug could be considered as an effective therapeutic strategy against this disease by improving Nrf2/SIKE signaling pathway.


Subject(s)
Air Pollutants , NF-E2-Related Factor 2 , Air Pollutants/toxicity , Animals , Glycosides , Inflammation , Intracellular Signaling Peptides and Proteins , Kaempferols , Liver/metabolism , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Oxidative Stress , Particulate Matter/toxicity
18.
J Hazard Mater ; 400: 123158, 2020 12 05.
Article in English | MEDLINE | ID: mdl-32947736

ABSTRACT

Ambient particulate matter (PM2.5)-induced metabolic syndromes is a critical contributor to the pathological processes of neurological diseases, but the underlying molecular mechanisms remain poorly understood. The rhomboid 5 homolog 2 (Rhbdf2), an essential regulator in the production of TNF-α, has recently been confirmed to exhibit a key role in regulating inflammation-associated diseases. Thus, we examined whether Rhbdf2 contributes to hypothalamic inflammation via NF-κB associated inflammation activation in long-term PM2.5-exposed mice. Specifically, proopiomelanocortin-specific Rhbdf2 deficiency (Rhbdf2Pomc) and corresponding littermates control mice were used for the current study. After 24 weeks of PM2.5 inhalation, systemic-metabolism disorder was confirmed in WT mice in terms of impaired glucose tolerance, increased insulin resistance, and high blood pressure. Markedly, PM2.5-treated Rhbdf2Pomc mice displayed a significantly opposite trend in these parameters compared with those of the controls group. We next confirmed hypothalamic injury accompanied by abnormal POMC neurons loss, as indicated by increased inflammatory cytokines, chemokines, and oxidative-stress levels and decreased antioxidant activity. These results were further supported by blood routine examination. In summary, our findings suggest that Rhbdf2 plays an important role in exacerbating PM2.5-stimulated POMC neurons loss associated hypothalamic injury, thus providing a possible target for blocking pathological development of air pollution-associated diseases.


Subject(s)
Air Pollutants , Particulate Matter , Air Pollutants/toxicity , Animals , Inflammation/chemically induced , Inflammation/genetics , Mice , Neurons , Oxidative Stress , Particulate Matter/toxicity , Pro-Opiomelanocortin
19.
Cell Death Dis ; 11(7): 563, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32703935

ABSTRACT

17-beta-hydroxysteroid dehydrogenase 10 (HSD17B10) plays an important role in mitochondrial fatty acid metabolism and is also involved in mitochondrial tRNA maturation. HSD17B10 missense mutations cause HSD10 mitochondrial disease (HSD10MD). HSD17B10 with mutations identified from cases of HSD10MD show loss of function in dehydrogenase activity and mitochondrial tRNA maturation, resulting in mitochondrial dysfunction. It has also been implicated to play roles in the development of Alzheimer disease (AD) and tumorigenesis. Here, we found that HSD17B10 is a new substrate of NAD-dependent deacetylase Sirtuin 3 (SIRT3). HSD17B10 is acetylated at lysine residues K79, K99 and K105 by the acetyltransferase CBP, and the acetylation is reversed by SIRT3. HSD17B10 acetylation regulates its enzymatic activity and the formation of mitochondrial RNase P. Furthermore, HSD17B10 acetylation regulates the intracellular functions, affecting cell growth and cell resistance in response to stresses. Our results demonstrated that acetylation is an important regulation mechanism for HSD17B10 and may provide insight into interrupting the development of AD.


Subject(s)
3-Hydroxyacyl CoA Dehydrogenases/metabolism , Oxidative Stress , Sirtuin 3/metabolism , Stress, Physiological , 3-Hydroxyacyl CoA Dehydrogenases/chemistry , Acetylation , Alternative Splicing/genetics , Amino Acid Sequence , Cell Proliferation , HCT116 Cells , HEK293 Cells , Humans , Mitochondria/metabolism , Peptide Fragments/metabolism , Protein Binding , RNA, Transfer/genetics , Sialoglycoproteins/metabolism
20.
Mol Metab ; 34: 112-123, 2020 04.
Article in English | MEDLINE | ID: mdl-32180551

ABSTRACT

OBJECTIVE: Chronic inflammation of adipose tissues contributes to obesity-triggered insulin resistance. Unfortunately, the potential molecular mechanisms regarding obesity-associated systemic inflammation and metabolic disorder remain complicated. Here, we report that inactive rhomboid-like protein 2 (iRhom2) was increased in overweight mice with adipose inflammation. METHODS: Mice with deletion of iRhom2 on a C57BL/6J background, mice without deletion of this gene (controls), and mice with deficiency of iRhom2 only in myeloid cells were fed a standard chow diet (SCD) or a high-fat diet (HFD; 60% fat calories). Then the adipose tissues or bone marrow cells were isolated for the further detection. RESULTS: After 16 weeks on a high-fat diet (HFD), obesity, chronic inflammation in adipose tissues, and insulin resistance were markedly mitigated in iRhom2 knockout (iRhom2 KO) mice, whereas these parameters were exaggerated in iRhom2 overactivated mice. The adverse influences of iRhom2 on adipose inflammation and associated pathologies were determined in db/db mice. We further demonstrated that, in response to an HFD, iRhom2 KO mice and mice with deletion only in the myeloid cells showed less severe adipose inflammation and insulin resistance than control groups. Conversely, transplantation of bone marrow cells from normal mice to iRhom2 KO mice unleashed severe systemic inflammation and metabolic dysfunction after HFD ingestion. CONCLUSION: We identified iRhom2 as a key regulator that promotes obesity-associated metabolic disorders. Loss of iRhom2 from macrophages in adipose tissues may indirectly restrain inflammation and insulin resistance via blocking crosslinks between macrophages and adipocytes. Hence, iRhom2 may be a therapeutic target for obesity-induced metabolic dysfunction.


Subject(s)
Adipose Tissue/metabolism , Carrier Proteins/metabolism , Inflammation/metabolism , Macrophages/metabolism , Obesity/metabolism , Animals , Carrier Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese
SELECTION OF CITATIONS
SEARCH DETAIL
...