Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 23(13)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35806426

ABSTRACT

Benefitting from the special structure of the leaf cuticle layer, plants have natural hydrophobicity and anti-fouling abilities. Inspired by the leaf surface structure, a biomimetic modification strategy was raised to improve the surface hydrophobicity of polyacrylate coating for controlled release fertilizer. Double-layer (polyacrylate and carnauba wax) coated fertilizer was obtained after biomimetic modification. The quality of controlled release fertilizer modified with the carnauba wax was greatly enhanced, and the coating material was effectively saved. The surface appearance of polyacrylate-coated fertilizer was improved for the surface blemish was repaired by the loaded carnauba wax. The characterizations by Fourier transform infrared spectroscopy indicated that the hydrogen bonds were formed between the water-based polyacrylate membrane and the carnauba wax layers. By optimizing the content of polyacrylate and carnauba wax, the release duration of the fertilizer was effectively prolonged, which was improved from 1 month to more than 2 months after the biomimetic modification. Therefore, biological wax as an environmentally-friendly natural material that has showed a broad potential in the application of coated controlled release fertilizer.


Subject(s)
Fertilizers , Urea , Biomimetics , Delayed-Action Preparations/chemistry , Polymers , Water , Waxes/chemistry
2.
Nanotechnology ; 33(43)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35760042

ABSTRACT

Light olefins (C2-C4) play a crucial role as basic ingredients in chemical industry, and oxidative dehydrogenation (ODH) of light alkanes to olefins has been one of the popular routes since the shale gas revolution. ODH of light alkanes has advantages on energy-and-cost saving as compared with traditional direct dehydrogenation, but it is restricted by its overoxidation which results in the relatively low olefin selectivity. Boron nitride (BN), an interesting nanomaterial with an analogous structure to graphene, springs out and manifests the superior performance as advanced catalysts in ODH, greatly improving the olefin selectivity under high alkane conversion. In this review, we introduce BN nanomaterials in four dimensions together with typical methods of syntheses. Traditional catalysts for ODH are also referred as comparison on several indicators-olefin yields and preparation techniques, including the metal-based catalysts and the non-metal-based catalysts. We also surveyed the BN catalysts for ODH reaction in recent five years, focusing on the different dimensions of BN together with the synthetic routes accounting for the active sites and the catalytic ability. Finally, an outlook of the potential promotion on the design of BN-based catalysts and the possible routes for the exploration of BN-related catalytic mechanisms are proposed.

3.
Genes (Basel) ; 11(5)2020 05 21.
Article in English | MEDLINE | ID: mdl-32455735

ABSTRACT

Cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) and plastid glyceraldehyde-3-phosphate dehydrogenase (GAPCp) are key enzymes in glycolysis. Besides their catalytic function, GAPC/GAPCp participates in the regulation of plant stress response and growth and development. However, the involvement of GAPC/GAPCp in the regulation of fruit ripening is unclear. In this study, FaGAPC2 and FaGAPCp1 in strawberries were isolated and analyzed. FaGAPC2 and FaGAPCp1 transcripts showed high transcript levels in the fruit. Transient overexpression of FaGAPC2 and FaGAPCp1 delayed fruit ripening, whereas RNA interference promoted fruit ripening and affected fruit anthocyanins and sucrose levels. Change in the expression patterns of FaGAPC2 and FaGAPCp1 also influenced the expression of several glycolysis-related and ripening-related genes such as CEL1, CEL2, SS, ANS, MYB5, NCED1, ABI1, ALDO, PK, and G6PDH, and H2O2 level and reduced glutathione (GSH)/glutathione disulfide (GSSG) redox potential. Meanwhile, metabolomics experiments showed that transient overexpression of FaGAPCp1 resulted in a decrease in anthocyanins, flavonoids, organic acid, amino acids, and their derivatives. In addition, abscisic acid (ABA) and sucrose treatment induced the production of large amounts of H2O2 and inhibited the expression of FaGAPC2/FaGAPCp1 in strawberry fruit. These results revealed that FaGAPC2/FaGAPCp1 is a negative regulator of ABA and sucrose mediated fruit ripening which can be regulated by oxidative stress.


Subject(s)
Fragaria/genetics , Fruit/genetics , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Hydrogen Peroxide/metabolism , Abscisic Acid/metabolism , Anthocyanins/genetics , Cytosol/enzymology , Fragaria/enzymology , Fruit/growth & development , Gene Expression Regulation, Plant/genetics , Hydrogen Peroxide/economics , RNA Interference , Signal Transduction/genetics , Sucrose/metabolism
4.
Mol Genet Genomics ; 295(2): 421-438, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31807909

ABSTRACT

Abscisic acid (ABA) and sucrose play an important role in strawberry fruit ripening, but how ABA and sucrose co-regulate this ripening progress remains unclear. The intention of this study was to examine the effect of ABA and sucrose on strawberry fruit ripening and to evaluate the ABA/sucrose interaction mechanism on the strawberry fruit ripening process. Here, we report that there is an acute synergistic effect between ABA and sucrose in accelerating strawberry fruit ripening. The time frame of fruit development and ripening was shortened after the application of ABA, sucrose, and ABA + sucrose, but most of the major quality parameters in treated-ripe fruit, including fruit weight, total soluble solids, anthocyanin, ascorbic acid, the total phenolic content, lightness (L*), chroma (C*), and hue angle (h°) values were not affected. Meanwhile, the endogenous ABA and sucrose levels, and the expression of ABA and sucrose signaling genes and ripening-related genes, such as NCED1, NCED2, SnRK2.2, SuSy, MYB5, CEL1, and CEL2, was all significantly enhanced by ABA or sucrose treatment alone, but in particular, by the ABA + sucrose treatment. Therefore, improving the ripening regulation efficiency is one synergetic action of ABA/sucrose. Another synergetic action of ABA/sucrose shows that a short inhibition of glycolysis occurs during accelerated strawberry ripening. ABA and sucrose can induce higher accumulation of H2O2, leading to a transient decrease in glycolysis. Conversely, lower endogenous H2O2 levels caused by reduced glutathione (GSH) treatment resulted in a transient increase in glycolysis while delaying strawberry fruit ripening. Collectively, this study demonstrates that the ABA/sucrose interaction affects the ripening regulation efficiency and shows inhibition of glycolysis.


Subject(s)
Abscisic Acid/metabolism , Fragaria/genetics , Fruit/genetics , Sucrose/metabolism , Anthocyanins/metabolism , Fragaria/growth & development , Fragaria/metabolism , Fruit/growth & development , Fruit/metabolism , Gene Expression Regulation, Plant , Glutathione/metabolism , Glycolysis/genetics , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Signal Transduction/genetics
5.
Int J Genomics ; 2019: 9203057, 2019.
Article in English | MEDLINE | ID: mdl-31828083

ABSTRACT

Strawberry is a typical nonclimacteric fruit, whose ripening mechanism needs to be further investigated. Sucrose has been recently proved as a signal molecule, participating in strawberry fruit ripening and related processes. While in the effects of sucrose application timing and concentration on ripening, fruit qualities remain unclear, as well as the transcriptome-wide details about the effects of sucrose on the gene expression involved in ripening-related processes. In this study, strawberry fruits at the degreening (DG), white (W), and initial-red (IR) stages were treated with different concentration of sucrose. The results showed that anthocyanin was increased while total polyphenol concentration (TPC) and total flavonoid concentration (TFC) were decreased during fruit development after sucrose treatment. Interestingly, It was showed that 100 mM sucrose application at the DG stage had the most obvious effects on fruit ripening; it made all the fruits turn into full-red (FR) around 4 days (d) earlier than the control, while it did not affect fruit quality traits and most bioactive compounds in the FR fruits. Subsequently, RNA sequencing (RNAseq) of the fruits collected at 8 days after 100 mM sucrose treatment was carried out. It was suggested that 993 genes were differentially expressed comparing with the control. Transcriptome-based expression analysis revealed that sucrose induced the expression of genes involved in the AsA and anthocyanin biosynthesis, while largely suppressed the expression of genes in TCA. The results obtained in this study provided more expression profiles of ripening-related genes under the treatment of sucrose, which will contribute to a better understanding for the mechanism underlying sucrose-induced fruit ripening.

6.
Nat Commun ; 10(1): 1927, 2019 04 26.
Article in English | MEDLINE | ID: mdl-31028272

ABSTRACT

Circularly polarized light (CPL) detection is required in various fields such as drug screening, security surveillance and quantum optics. Conventionally, CPL photodetector needs the installation of optical elements, imposing difficulties for integrated and flexible devices. The established CPL detectors without optical elements rely on chiral organic semiconductor and metal metamaterials, but they suffer from extremely low responsivity. Organic-inorganic hybrid materials combine CPL-sensitive absorption induced by chiral organics and efficient charge transport of inorganic frameworks, providing an option for direct CPL detection. Here we report the CPL detector using chiral organic-inorganic hybrid perovskites, and obtain a device with responsivity of 797 mA W-1, detectivity of 7.1 × 1011 Jones, 3-dB frequency of 150 Hz and one-month stability, a competitive combined feature for circularly polarized light detection. Thanks to the solution processing, we further demonstrate flexible devices on polyethylene terephthalate substrate with comparable performance.

7.
ACS Appl Mater Interfaces ; 10(50): 43915-43922, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30479125

ABSTRACT

Lead halide perovskite nanocrystals (NCs) have attracted intense attention because of their excellent optoelectronic properties. The ionic nature of halide perovskites makes them highly vulnerable to water. Encapsulation of perovskite NCs with inorganic or organic materials has been reported to enhance their stability; however, they often suffer from large aggregation size, low water solubility, and difficulty for further surface functionalization. Here, we report a facile aqueous process to synthesize water-soluble CsPbBr3/Cs4PbBr6 NCs with the assistance of a fluorocarbon agent (FCA), which features a novel mechanism of the perovskite crystallization at the oil/water interface and direct perovskite NCs/FCA self-assembly in an aqueous environment. The products exhibit a high absolute photoluminescence quantum yield (PLQY) of ∼80% in water with the PL lasting for weeks. Through successive ionic layer adsorption and reaction, BaSO4 was further applied to encapsulate the NCs, which greatly enhanced their stability in phosphate-buffered saline solutions. The high stability in water and saline solution, high PLQY, and tunable emission wavelength, together with the successful demonstration of brain tissue labeling and PL under X-ray excitation, make our perovskite NCs a promising choice for X-ray fluorescent biolabels.

8.
Adv Mater ; 29(29)2017 Aug.
Article in English | MEDLINE | ID: mdl-28589700

ABSTRACT

2D materials, particularly those bearing in-plane anisotropic optical and electrical properties such as black phosphorus and ReS2 , have spurred great research interest very recently as promising building blocks for future electronics. However, current progress is limited to layered compounds that feature atomic arrangement asymmetry within the covalently bonded planes. Herein, a series of highly anisotropic nanosheets (Sb2 Se3 , Sb2 S3 , Bi2 S3 , and Sb2 (S, Se)3 ), which are composed of 1D covalently linked ribbons stacked together via van der Waals force, is introduced as a new member to the anisotropic 2D material family. These unique anisotropic nanosheets are successfully fabricated from their polymer-like bulk counterparts through a gentle water freezing-thawing approach. Angle-resolved polarized Raman spectroscopy characterization confirms the strong in-plane asymmetry of Sb2 Se3 nanosheets, and photodetection study reveals their high responsivity and anisotropic in-plane transport. This work can enlighten the synthesis and application of new anisotropic 2D nanosheets that can be potentially applied for future electronic and optoelectronic devices.

9.
Nano Lett ; 16(12): 7446-7454, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27802046

ABSTRACT

Photodetectors convert light signals into current or voltage outputs and are widely used for imaging, sensing, and spectroscopy. Perovskite-based photodetectors have shown high sensitivity and fast response due to the unprecedented low recombination loss in this solution processed semiconductor. Among various types of CH3NH3PbI3 morphology (film, single crystal, nanowire), single-crystalline CH3NH3PbI3 nanowires are particularly interesting for photodetection because of their reduced grain boundary, morphological anisotropy, and excellent mechanical flexibility. The concomitant disadvantage associated with the CH3NH3PbI3 nanowire photodetectors is their large surface area, which catalyzes carrier recombination and material decomposition, thus significantly degrading device performance and stability. Here we solved this key problem by introducing oleic acid soaking to passivate surface defects of CH3NH3PbI3 nanowires, which leads to a device with much improved stability and unprecedented sensitivity (measured detectivity of 2 × 1013 Jones). By taking advantage of their one-dimensional geometry, we also showcased, for the first time, the linear dichroic photodetection of our CH3NH3PbI3 nanowire photodetector.

10.
Light Sci Appl ; 5(7): e16126, 2016 Jul.
Article in English | MEDLINE | ID: mdl-30167178

ABSTRACT

Photodetectors convert photons into current or voltage outputs and are thus widely used for spectroscopy, imaging and sensing. Traditional photodetectors generally show a consistent-polarity response to incident photons within their broadband responsive spectrum. Here we introduced a new type of photodetector employing SnS2 nanosheets sensitized with PbS colloidal quantum dots (CQDs) that are not only sensitive (~105 A W-1) and broadband (300-1000 nm) but also spectrally distinctive, that is, show distinctive (positive or negative) photoresponse toward incident photons of different wavelengths. A careful mechanism study revealed illumination-modulated Schottky contacts between SnS2 nanosheets and Au electrodes, altering the photoresponse polarity toward incident photons of different wavelengths. Finally, we applied our SnS2 nanosheet/PbS CQDs hybrid photodetector to differentiate the color temperature of emission from a series of white light-emitting diodes (LEDs), showcasing the unique application of our novel photodetectors.

11.
Nanoscale ; 7(19): 8811-8, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25908551

ABSTRACT

Thanks to their outstanding properties and a wide range of promising applications, the development of a versatile and convenient preparation method for metallic copper nanocrystals with controllable shape is of primary significance. Different from the literature that utilized a capping agent bearing only one kind of Cu binding functionality, either an amino or a carboxylic unit, for their preparation and shape control, this contribution reports a convenient method to engage both amino and carboxylic binding units at the same time. In this method, natural amino acids have been chosen as capping agents and demonstrated their versatile capabilities for the preparation of both Cu nanoparticles and nanowires. Detailed X-ray photoelectron spectroscopy revealed that the binding mode between amino acids and the Cu surface is highly dependent on their chemical structures. Interestingly, the produced Cu nanocrystals, exhibited an extraordinarily excellent anti-oxidation power. Furthermore, it was found that the multiple functionalities of amino acids not only have a great impact on the properties of their capped nanocrystals, such as solvent dispersibility, but also provide a convenient route for their further modification and functionalization.


Subject(s)
Amino Acids/chemistry , Copper/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Oxidation-Reduction , Photoelectron Spectroscopy , Surface Properties
12.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(3): 577-81, 2012 Mar.
Article in Chinese | MEDLINE | ID: mdl-22582608

ABSTRACT

Laser-induced breakdown spectroscopy is a technology that can be used for high-speed, real time, multi-component, online, remote detection, and it has considerable superiority in explosives detection. In the present experiment, using 1 064 nm Q-switch laser beam as the resource, the authors investigated a common inorganic explosive (black powder) and one of its key components (KNO3), while choosing NaNO3 as the reference. We obtained the LIBS spectroscopy of these three samples in two surrounding atmospheres (air and Ar gas) at different time delay. And we analysed the change in line intensity ratio of N, O along with the increase in time delay, and found that the maximum of the value of O/N is obtained at time delay 596 ns.

13.
Guang Pu Xue Yu Guang Pu Fen Xi ; 26(12): 2276-9, 2006 Dec.
Article in Chinese | MEDLINE | ID: mdl-17361729

ABSTRACT

The interaction of ciprofloxacin and calf thymus DNA (ctDNA) was studied using UV spectrometry and fluorescence spectrometry. Ciprofloxacin exhibited a fluorescence excitation at 270 nm and a fluorescence emission at 420 nm in pH 7.0 phosphate buffer solutions due to the groove binding of ciprofloxacin on calf thymus ctDNA. The binding constant was 2. 64 X 104 mol(-1) x L(25 degrees C). Based on the fluorescence quenching, a novel method for sensitive determination of calf thymus ctDNA concentration ranging from 80 nmol x L(-1) to 45 micromol x L(-1) was developed. The relative standard deviation for eleven detections of 25 micromol x L(-1) ctDNA was 4. 2%.


Subject(s)
Ciprofloxacin/chemistry , DNA/chemistry , Spectrometry, Fluorescence , Molecular Structure , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...