Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Huan Jing Ke Xue ; 44(4): 2093-2102, 2023 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-37040959

ABSTRACT

To reveal the characteristics and key impact factors of phytoplankton communities in different types of lakes, sampling surveys for phytoplankton and water quality parameters were conducted at 174 sampling sites in a total of 24 lakes covering urban, countryside, and ecological conservation areas of Wuhan in spring, summer, autumn, and winter 2018. The results showed that a total of 365 species of phytoplankton from nine phyla and 159 genera were identified in the three types of lakes. The main species were green algae, cyanobacteria, and diatoms, accounting for 55.34%, 15.89%, and 15.07% of the total number of species, respectively. The phytoplankton cell density varied from 3.60×106-421.99×106 cell·L-1, chlorophyll-a content varied from 15.60-240.50 µg·L-1, biomass varied from 27.71-379.79 mg·L-1, and the Shannon-Wiener diversity index varied from 0.29-2.86. In the three lake types, cell density, Chla, and biomass were lower in EL and UL, whereas the opposite was true for the Shannon-Wiener diversity index. NMDS and ANOSIM analysis showed differences in phytoplankton community structure (Stress=0.13, R=0.048, P=0.2298). In addition, the phytoplankton community structure of the three lake types had significant seasonal characteristics, with chlorophyll-a content and biomass being significantly higher in summer than in winter (P<0.05). Spearman correlation analysis showed that phytoplankton biomass decreased with increasing N:P in UL and CL, whereas the opposite was true for EL. Redundancy analysis (RDA) showed that WT, pH, NO3-, EC, and N:P were the key factors that significantly affected the variability in phytoplankton community structure in the three types of lakes in Wuhan (P<0.05).


Subject(s)
Cyanobacteria , Diatoms , Phytoplankton , Lakes/analysis , Chlorophyll/analysis , Chlorophyll A
2.
Huan Jing Ke Xue ; 42(7): 3198-3205, 2021 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-34212645

ABSTRACT

According to a spatial distribution analysis of phosphorus in sediments from Honghu Wetland, it was found that TP content in sediments at the mouth of Honghu Lake was 781.31-1955.84 mg·kg-1 and the average value was(1287.21±437.28)mg·kg-1. TP content in sediments in the open water area was 438.33-1554.04 mg·kg-1, with an average value of(718.10±238.15)mg·kg-1. The TP content of sediments in lake inlet was significantly higher than that of sediments in the open water area(P<0.05), and that in the enclosed aquaculture was higher than in the open water area, although no significant difference was observed (P>0.05). The TP content of sediments to the northwest and northeast of Honghu Lake was higher than that to the southwest of Honghu Lake, and the TP content of sediments in The Four-lake main canal was significantly higher than that of Luoshan main canal(P<0.05). The phosphorus input in the Four-lake main canal may be the main source of phosphorus in Honghu Lake sediments. The phosphorus fraction composition in sediments from different sampling sites were significantly different. Fe/Al-P and Ca-P were the main forms of phosphorus in sediments from the lake inlet, while OP and Ca-P were the main forms of phosphorus in sediments from the open water area. The variation in spatial phosphorus form composition was related to the influence of human activity and the distribution of aquatic plants. Fe/Al-P and OP contents were used to estimate the content of biological available phosphorus (BAP) in evaluated sediments, and the proportion of BAP in TP was used to estimate the risk of phosphorus release in Honghu sediments. BAP/TP was 39.8%-69%, with an average of(56.5±7.23)%, indicating a high risk of phosphorus release. OP and BAP were significantly correlated with TP in overlying water(P<0.01), and the correlation between BAP and phosphate in the overlying water was the highest. The results showed that phosphorus concentration in the overlying water may be related to the release of Fe/Al-P and OP into water bodies.


Subject(s)
Phosphorus , Water Pollutants, Chemical , China , Environmental Monitoring , Geologic Sediments , Humans , Lakes , Phosphorus/analysis , Water Pollutants, Chemical/analysis , Wetlands
3.
Huan Jing Ke Xue ; 32(10): 2904-8, 2011 Oct.
Article in Chinese | MEDLINE | ID: mdl-22279899

ABSTRACT

The allelopathic influence of Myriophyllum spicatum on chlorophyll content and chlorophyll fluorescence parameters of Microcystis aeruginosa was studied in coexistence condition. Chlorophyll fluorescence parameters included q(N) (non-photochemical quenching), Y II (effective quantum yield), F(v)/F(m) (maximum quantum yield), F'(v)/F'(m) (effective quantum yield of photosystem II photochemistry) and ETR (electron transport rate). During the three days under coexistence condition, chlorophyll content and chlorophyll fluorescence parameters of M. aeruginosa were affected by M. spicatum and presented different sensitivities. Chlorophyll content of M. aeruginosa was significantly inhibited by 20.80% on the second day at 10.0 g/L of M. spicatum (P < 0.05). However, chlorophyll fluorescence parameters of M. aeruginosa decreased earlier and rapider than chlorophyll content. On the first day, q(N) and Y II of M. aeruginosa were significantly inhibited by 15.59% and 13.00% at 5.0 g/L of M. spicatum (P < 0.05), and F(v)/F(m) and F'(v) /F'(m) were declined by 15.87% and 12.07% at 10.0 g/L (P < 0.05), respectively. On the third day, ETR and three parameters based on ETR were affected at all levels of M. spicatum (P < 0.05). The inhibition effects on the photosynthetic activity of M. aeruginosa might be considered as one of the target sites of M. spicatum and chlorophyll fluorescence parameters were more sensitive parameters than chlorophyll content, especially q(n).


Subject(s)
Magnoliopsida/physiology , Microcystis/drug effects , Pheromones/pharmacology , Photosynthesis/drug effects , Chlorophyll/metabolism , Fluorescence , Magnoliopsida/metabolism , Pheromones/biosynthesis , Photosystem II Protein Complex/drug effects , Photosystem II Protein Complex/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...