Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Mar Genomics ; 76: 101122, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39009495

ABSTRACT

Pseudomonas species are known for their diverse metabolic abilities and broad ecological distribution. They are fundamental components of bacterial communities and perform essential ecological functions in the environment. A psychrotrophic Pseudomonas sp. IT1137 was isolated from intertidal sediment in the coastal region of the Fildes Peninsula, King George Island, Antarctica. The strain contained a circular chromosome of 5,346,697 bp with a G + C content of 61.66 mol% and one plasmid of 4481 bp with a G + C content of 64.61 mol%. A total of 4848 protein-coding genes, 65 tRNA genes and 15 rRNA genes were obtained. Genome sequence analysis revealed that strain IT1137 not only is a potentially novel species of the genus Pseudomonas but also harbors functional genes related to nitrogen, sulfur and phosphorus cycling. In addition, genes involved in alkane degradation, ectoine synthesis and cyclic lipopeptide (CLP) production were detected in the bacterial genome. The results indicate the potential of the strain Pseudomonas sp. IT1137 for biotechnological applications such as bioremediation and secondary metabolite production and are helpful for understanding bacterial adaptability and ecological function in cold coastal environments.


Subject(s)
Alkanes , Cold Temperature , Genome, Bacterial , Geologic Sediments , Pseudomonas , Pseudomonas/genetics , Antarctic Regions , Geologic Sediments/microbiology , Alkanes/metabolism , Whole Genome Sequencing , Biodegradation, Environmental
2.
Article in English | MEDLINE | ID: mdl-39073408

ABSTRACT

Two Gram-stain-negative, aerobic, rod-shaped, non-endospore-forming and motile bacterial strains, designated IT1137T and S025T, were isolated from an intertidal sediment sample collected from the Fildes Peninsula (King George Island, Maritime Antarctica) and a soil sample under red snow in the Ny-Ålesund region (Svalbard, High Arctic), respectively. The 16S rRNA gene sequence similarity values grouped them in the genus Pseudomonas. The two strains were characterized phenotypically using API 20E, API 20NE, API ZYM and Biolog GENIII tests and chemotaxonomically by their fatty acid contents, polar lipids and respiratory quinones. Multilocus sequence analysis (concatenated 16S rRNA, gyrB, rpoB and rpoD sequences), together with genome comparisons by average nucleotide identity and digital DNA-DNA hybridization, were performed. The results showed that the similarity values of the two isolates with the type strains of related Pseudomonas species were below the recognized thresholds for species definition. Based on polyphasic taxonomy analysis, it can be concluded that strains IT1137T and S025T represent two novel species of the genus Pseudomonas, for which the names Pseudomonas paeninsulae sp. nov. (type strain IT1137T=PMCC 100533T=CCTCC AB 2023226T=JCM 36637T) and Pseudomonas svalbardensis sp. nov. (type strain S025T=PMCC 200367T= CCTCC AB 2023225T=JCM 36638T) are proposed.


Subject(s)
Bacterial Typing Techniques , DNA, Bacterial , Fatty Acids , Geologic Sediments , Multilocus Sequence Typing , Nucleic Acid Hybridization , Phylogeny , Pseudomonas , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , RNA, Ribosomal, 16S/genetics , Pseudomonas/genetics , Pseudomonas/classification , Pseudomonas/isolation & purification , Geologic Sediments/microbiology , DNA, Bacterial/genetics , Arctic Regions , Antarctic Regions , Fatty Acids/analysis , Svalbard , Base Composition , Quinones/analysis
SELECTION OF CITATIONS
SEARCH DETAIL