Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Bioresour Technol ; 245(Pt A): 1155-1161, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28863992

ABSTRACT

This study evaluated high-rate activated sludge treatment across a broad range of short solids retention times (SRT)s (0.5-3d) and found a strong SRT-outcome dependence for performance and subsequent anaerobic degradability of the sludge. Up to 50% total nitrogen, and 35% ammonia removal was also achieved at the longer SRTs, via partitioning rather than reaction. The aerobic SRT significantly affected the anaerobic degradability of the sludge produced (p<0.001), with degradability increasing from 66% to over 80% while reducing the SRT from 3d to 0.5d. This is higher than predicted by conventional models, likely due to additional mechanisms such as adsorption and storage, not included in these.


Subject(s)
Bioreactors , Sewage , Denitrification , Food , Nitrogen , Waste Disposal, Fluid
2.
Appl Microbiol Biotechnol ; 100(15): 6927-6934, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27260287

ABSTRACT

In order to study the role of sufficient phosphorus (P) in biodiesel production by microalgae, Phaeodactylum tricornutum were cultivated in six different media treatments with combination of nitrogen (N) sufficiency/deprivation and phosphorus sufficiency/limitation/deprivation. Profiles of N and P, biomass, and fatty acids (FAs) content and compositions were measured during a 7-day cultivation period. The results showed that the FA content in microalgae biomass was promoted by P deprivation. However, statistical analysis showed that FA productivity had no significant difference (p = 0.63, >0.05) under the treatments of N deprivation with P sufficiency (N-P) and N deprivation with P deprivation (N-P-), indicating P sufficiency in N deprivation medium has little effect on increasing biodiesel productivity from P. triornutum. It was also found that the P absorption in N-P medium was 1.41 times higher than that in N sufficiency and P sufficiency (NP) medium. N deprivation with P limitation (N-P-l) was the optimal treatment for producing biodiesel from P. triornutum because of both the highest FA productivity and good biodiesel quality.


Subject(s)
Biofuels/analysis , Diatoms/metabolism , Fatty Acids/metabolism , Microalgae/metabolism , Nitrogen/analysis , Phosphorus/analysis , Biomass , Fatty Acids/analysis , Principal Component Analysis
3.
Water Sci Technol ; 73(5): 1052-60, 2016.
Article in English | MEDLINE | ID: mdl-26942526

ABSTRACT

The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity.


Subject(s)
Bioreactors , Sewage , Wastewater/chemistry , Ammonium Compounds , Anaerobiosis , Digestion , Methane , Nitrogen , Oxidation-Reduction , Waste Disposal, Fluid , Water Pollutants, Chemical
4.
Environ Technol ; 36(21): 2732-9, 2015.
Article in English | MEDLINE | ID: mdl-26056846

ABSTRACT

Arsenic is known as a toxic element to humans, and has been reported to co-exist with iron and manganese in groundwater worldwide. The typical method for arsenic removal from groundwater is to oxidize trivalent (As(III)) to pentavalent (As(V)) followed by the As(V) removal. This study aims to evaluate the oxidization efficiency of As(III) in a mature biological manganese (Mn(2+)) removal filtration system with different elevated influent As(III) concentrations. The effects of influent Mn(2+) concentrations, influent As(III) concentrations, filtration rates and dissolved oxygen (DO) levels on the efficiency of As(III) oxidation were assessed. The results showed that As(III) oxidation can be simultaneously achieved with removing Mn(2+) in the filtration system. The oxidation efficiency was not impacted by increasing the influent As(III) concentration up to nearly 2500 µg L(-1), but the filtration rate was limited at 11 m h(-1) for maintaining the effluent As(III) concentration below 10 µg L(-1). The oxidation process followed first-order kinetics with the constant reaching 0.56-0.61 min(-1). The As(III) oxidation process was most likely to be mediated by the bacterial community initially developed for Mn(2+) removal in the filtration system, which performed the catalytic oxidation for As(III).


Subject(s)
Arsenic/chemistry , Filtration/instrumentation , Groundwater/chemistry , Manganese/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/instrumentation , Arsenic/analysis , Equipment Design , Filtration/methods , Kinetics , Oxidation-Reduction , Water Pollutants, Chemical/analysis , Water Purification/methods
5.
Water Res ; 69: 173-182, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25481076

ABSTRACT

Recent increases in global phosphorus costs, together with the need to remove phosphorus from wastewater to comply with water discharge regulations, make phosphorus recovery from wastewater economically and environmentally attractive. Biological phosphorus (Bio-P) removal process can effectively capture the phosphorus from wastewater and concentrate it in a form that is easily amendable for recovery in contrast to traditional (chemical) phosphorus removal processes. However, Bio-P removal processes have historically been operated at medium to long solids retention times (SRTs, 10-20 days typically), which inherently increases the energy consumption while reducing the recoverable carbon fraction and hence makes it incompatible with the drive towards energy self-sufficient wastewater treatment plants. In this study, a novel high-rate Bio-P removal process has been developed as an energy efficient alternative for phosphorus removal from wastewater through operation at an SRT of less than 4 days. The process was most effective at an SRT of 2-2.5 days, achieving >90% phosphate removal. Further reducing the SRT to 1.7 days resulted in a loss of Bio-P activity. 16S pyrotag sequencing showed the community changed considerably with changes in the SRT, but that Comamonadaceae was consistently abundant when the Bio-P activity was evident. FISH analysis combined with DAPI staining confirmed that bacterial cells of Comamonadaceae arranged in tetrads contained polyphosphate, identifying them as the key polyphosphate accumulating organisms at these low SRT conditions. Overall, this paper demonstrates a novel, high-rate phosphorus removal process that can be effectively integrated with short SRT, energy-efficient carbon removal and recovery processes.


Subject(s)
Abattoirs , Comamonadaceae/metabolism , Phosphorus/isolation & purification , Polyphosphates/metabolism , Wastewater/chemistry , Wastewater/microbiology , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Bioreactors/microbiology , Comamonadaceae/ultrastructure , In Situ Hybridization, Fluorescence , Indoles/metabolism , Microbiota , Polyphosphates/isolation & purification , Time Factors , Waste Disposal, Fluid
6.
Water Res ; 47(17): 6546-57, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24045213

ABSTRACT

Conventional abattoir wastewater treatment processes for carbon and nutrient removal are typically designed and operated with a long sludge retention time (SRT) of 10-20 days, with a relatively high energy demand and physical footprint. The process also generates a considerable amount of waste activated sludge that is not easily degradable due to the long SRT. In this study, an innovative high-rate sequencing batch reactor (SBR) based wastewater treatment process with short SRT and hydraulic retention time (HRT) is developed and characterised. The high-rate SBR process was shown to be most effective with SRT of 2-3 days and HRT of 0.5-1 day, achieving >80% reduction in chemical oxygen demand (COD) and phosphorus and approximately 55% nitrogen removal. A majority of carbon removal (70-80%) was achieved by biomass assimilation and/or accumulation, rather than oxidation. Anaerobic degradability of the sludge generated in the high-rate SBR process was strongly linked to SRT, with measured degradability extent being 85% (2 days SRT), 73% (3 days), and 63% (4 days), but it was not influenced by digestion temperature. However, the rate of degradation for 3 and 4 days SRT sludge was increased by 45% at thermophilic conditions compared to mesophilic conditions. Overall, the treatment process provides a very compact and energy efficient treatment option for highly degradable wastewaters such as meat and food processing, with a substantial space reduction by using smaller reactors and a considerable net energy output through the reduced aerobic oxidation and concurrent increased methane production potential through the efficient sludge digestion.


Subject(s)
Sewage/microbiology , Wastewater/microbiology , Water Purification/methods , Abattoirs , Aerobiosis , Anaerobiosis , Animals , Bacteria/metabolism , Batch Cell Culture Techniques , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Bioreactors , Hydrolysis , Kinetics , Methane/analysis , Nitrates/analysis , Nitrites/analysis , Nitrogen/isolation & purification , Oxidation-Reduction , Phosphorus/isolation & purification , RNA, Ribosomal, 16S/genetics , Temperature , Time Factors
7.
Chem Cent J ; 7: 46, 2013.
Article in English | MEDLINE | ID: mdl-23497481

ABSTRACT

BACKGROUND: Manufactured silver nanoparticles (AgNPs) are one of the most commonly used nanomaterials in consumer goods and consequently their concentrations in wastewater and hence wastewater treatment plants are predicted to increase. We investigated the fate of AgNPs in sludge that was subjected to aerobic and anaerobic treatment and the impact of AgNPs on microbial processes and communities. The initial identification of AgNPs in sludge was carried out using transmission electron microscopy (TEM) with energy dispersive X-ray (EDX) analysis. The solid phase speciation of silver in sludge and wastewater influent was then examined using X-ray absorption spectroscopy (XAS). The effects of transformed AgNPs (mainly Ag-S phases) on nitrification, wastewater microbial populations and, for the first time, methanogenesis was investigated. RESULTS: Sequencing batch reactor experiments and anaerobic batch tests, both demonstrated that nitrification rate and methane production were not affected by the addition of AgNPs [at 2.5 mg Ag L(-1) (4.9 g L(-1) total suspended solids, TSS) and 183.6 mg Ag kg (-1) (2.9 g kg(-1) total solids, TS), respectively]. The low toxicity is most likely due to AgNP sulfidation. XAS analysis showed that sulfur bonded Ag was the dominant Ag species in both aerobic (activated sludge) and anaerobic sludge. In AgNP and AgNO3 spiked aerobic sludge, metallic Ag was detected (~15%). However, after anaerobic digestion, Ag(0) was not detected by XAS analysis. Dominant wastewater microbial populations were not affected by AgNPs as determined by DNA extraction and pyrotag sequencing. However, there was a shift in niche populations in both aerobic and anaerobic sludge, with a shift in AgNP treated sludge compared with controls. This is the first time that the impact of transformed AgNPs (mainly Ag-S phases) on anaerobic digestion has been reported. CONCLUSIONS: Silver NPs were transformed to Ag-S phases during activated sludge treatment (prior to anaerobic digestion). Transformed AgNPs, at predicted future Ag wastewater concentrations, did not affect nitrification or methanogenesis. Consequently, AgNPs are very unlikely to affect the efficient functioning of wastewater treatment plants. However, AgNPs may negatively affect sub-dominant wastewater microbial communities.

8.
J Hazard Mater ; 187(1-3): 355-61, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21277081

ABSTRACT

Two-stage temperature phased anaerobic digestion (TPAD) is an increasingly popular method to improve stabilisation of sewage waste activated sludge, which normally has inherently poor and slow degradation. However, there has been limited systematic analysis of the impact of the initial thermophilic stage (temperature, pH and retention time) on performance in the main mesophilic stage. In this study, we demonstrate a novel two-stage batch test method for TPAD processes, and use it to optimize operating conditions of the thermophilic stage in terms of degradation extent and methane production. The method determines overall degradability and apparent hydrolysis coefficient in both stages. The overall process was more effective with short pre-treatment retention times (1-2 days) and neutral pH compared to longer retention time (4 days) and low pH (4-5). Degradabilities and apparent hydrolysis coefficients were 0.3-0.5 (fraction degradable) and 0.1-0.4d(-1), respectively, with a margin of error in each measurement of approximately 20% relative (95% confidence). Pre-treatment temperature had a strong impact on the whole process, increasing overall degradability from 0.3 to 0.5 as temperature increased from 50 to 65 °C, with apparent hydrolysis coefficient increasing from 0.1 to 0.4d(-1).


Subject(s)
Hot Temperature , Sewage , Anaerobiosis
9.
Water Res ; 45(4): 1597-606, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21185054

ABSTRACT

It is well established that waste activated sludge with an extended sludge age is inherently slow to degrade with a low extent of degradation. Pre-treatment methods can be used prior to anaerobic digestion to improve the efficiency of activated sludge digestion. Among these pre-treatment methods, temperature phased anaerobic digestion (TPAD) is one promising method with a relatively low energy input and capital cost. In this study, an experimental thermophilic (50-70 °C)-mesophilic system was compared against a control mesophilic-mesophilic system. The thermophilic-mesophilic system achieved 41% and 48% volatile solids (VS) destruction during pre-treatment of 60 °C and 65 °C (or 70 °C) respectively, compared to 37% in the mesophilic-mesophilic TPAD system. Solubilisation in the first stage was enhanced during thermophilic pre-treatment (15% at 50 °C and 27% at 60 °C, 65 °C and 70 °C) over mesophilic pre-treatment (7%) according to a COD balance. This was supported by ammonia-nitrogen measurements. Model based analysis indicated that the mechanism for increased performance was due to an increase in hydrolysis coefficient under thermophilic pre-treatment of 60 °C (0.5 ± 0.1 d(-1)), 65 °C (0.7 ± 0.2 d(-1)) and 70 °C (0.8 ± 0.2 d(-1)) over mesophilic pre-treatment (0.2 ± 0.1 d(-1)), and thermophilic pre-treatment at 50 °C (0.12 ± 0.06 d(-1)).


Subject(s)
Refuse Disposal/methods , Sewage/microbiology , Temperature , Waste Products/analysis , Anaerobiosis , Biodegradation, Environmental , Confidence Intervals , Fatty Acids, Volatile/analysis , Hydrolysis , Methane/analysis , Models, Chemical , Nitrogen/analysis , Quaternary Ammonium Compounds/analysis , Refuse Disposal/instrumentation , Solubility , Volatilization
10.
Water Res ; 44(1): 123-30, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19800093

ABSTRACT

Pre-treatment is used extensively to improve degradability and hydrolysis rate of material being fed into digesters. One emerging process is temperature phased anaerobic digestion (TPAD), which applies a short (2 day) 50-70 degrees C pre-treatment step prior to 35 degrees C digestion in the main stage (10-20 days). In this study, we evaluated a thermophilic-mesophilic TPAD against a mesophilic-mesophilic TPAD treating primary sludge. Thermophilic-mesophilic TPAD achieved 54% VS destruction compared to 44% in mesophilic-mesophilic TPAD, with a 25% parallel increase in methane production. Measurements of soluble COD and NH(4)(+)-N showed increased hydrolysis extent during thermophilic pre-treatment. Model based analysis indicated the improved performance was due to an increased hydrolysis coefficient rather than an increased inherent degradability, suggesting while TPAD is suitable as an intensification process, a larger main digester could achieve similar impact.


Subject(s)
Sewage/microbiology , Waste Disposal, Fluid/methods , Anaerobiosis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...