Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 795: 148827, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34252776

ABSTRACT

Dermal sorption is an important route for human exposure to organic chemicals embedded in consumer products, but the related chemical migration from consumer products to sweats was often overlooked in assessing skin exposure risk. To address this issue, the present study selected polycyclic aromatic hydrocarbons (PAHs), phthalic acid esters (PAEs), and benzothiazoles (BTs) as the target compounds and developed an in vitro simulation model with two artificial sweats (i.e., acidic and alkaline), a sorbent, and a PVC standard material. An appropriate biological inhibitor (ampicillin) and incubation time of 20 d for assessing the maximum migration efficiency of chemicals were selected. The mass balance of the target compounds during the in vitro incubation was verified. The established in vitro simulation model was used to determine the migration ratios of PAEs and BTs in three types of mouse pads. The maximum migration ratios of DBP, DIBP, DEHP, and BT from leather pad to both sweats were less than those for silicone and rubber pads. Key controlling parameters in migration ratios should be examined in subsequent investigations. Risk assessment showed that the daily exposure doses of PAEs and BTs in mouse pads were higher than the literature data. The hazard index of PAEs in leather pad exceed 1, indicating that PAEs could induce non-carcinogenic effects to human health through hand contact. Overall, the established in vitro simulation model provides a feasible alternative for assessing the potential risk for dermal exposure to consumer products.


Subject(s)
Phthalic Acids , Polycyclic Aromatic Hydrocarbons , China , Esters , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment , Sweat/chemistry
2.
Environ Sci Technol ; 53(21): 12495-12505, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31603658

ABSTRACT

The production and usage of non-polybrominated diphenyl ether (PBDE) halogenated flame retardants (HFRs) have substantially increased after the ban of several PBDEs. This has resulted in widespread environmental occurrence of non-PBDE HFRs, further amplified by emissions from primitive recycling of obsolete electronics (e-waste). The present study conducted chamber experiments to characterize 15 HFRs (∑15HFR) from thermal treatment and open burning of typical e-waste. Emission factors of ∑15HFR from thermal treatment were 2.6 × 104-3.9 × 105 ng g-1, slightly higher than those from open burning (8.8 × 103-1.0 × 105 ng g-1). Greater output over input mass ratios of ∑15HFR were obtained in thermal treatment than in open burning. Particulate and gaseous HFRs dominated the emissions in thermal treatment and open burning, respectively, largely because of the different temperatures used in the two processes. Particulate HFRs were primarily affiliated with fine particles (Dp < 1.8 µm) peaking at 0.56-1.0 or 0.32-0.56 µm in both thermal treatment and open burning. Occupational exposure to most FRs was relatively low, but several PBDEs may pose potential health risk to workers in e-waste home-workshops. Potentially accruing emissions and health risks of non-PBDE HFRs from primitive recycling of e-waste remain a great concern.


Subject(s)
Electronic Waste , Flame Retardants , Occupational Exposure , China , Environmental Monitoring , Halogenated Diphenyl Ethers , Humans , Recycling
3.
J Zhejiang Univ Sci B ; 16(8): 696-708, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26238545

ABSTRACT

Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Regardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that accumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elicitation. Thus, accumulation of IGS is a major metabolic hallmark of SA- and MeJA-mediated systemic response systems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively.


Subject(s)
Acetates/administration & dosage , Brassica rapa/metabolism , Cyclopentanes/administration & dosage , Glucosinolates/metabolism , Oxylipins/administration & dosage , Plant Leaves/metabolism , Plant Roots/metabolism , Salicylic Acid/administration & dosage , Brassica rapa/drug effects , Dose-Response Relationship, Drug , Metabolic Clearance Rate/drug effects , Metabolic Clearance Rate/physiology , Plant Leaves/drug effects , Plant Roots/drug effects , Tissue Distribution/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...