Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 32(47): e2003251, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33073405

ABSTRACT

Metal-air fuel cells with high energy density, eco-friendliness, and low cost bring significantly high security to future power systems. However, the impending challenges of low power density and high-current-density stability limit their widespread applications. In this study, an ultrahigh-power-density Zn-air fuel cell with robust stability is highlighted. Benefiting from the water-resistance effect of the confined nanopores, the highly active cobalt cluster electrocatalysts reside in specific nanopores and possess stable triple-phase reaction areas, leading to the synergistic optimization of electron conduction, oxygen gas diffusion, and ion transport for electrocatalysis. As a result, the as-established Zn-air fuel cell shows the best stability under high-current-density discharging (>90 h at 100 mA cm-2 ) and superior power density (peak power density: >300 mW cm-2 , specific power: 500 Wgcat -1 ) compared to most reported non-noble-metal electrocatalysts. The findings will provide new insights in the rational design of electrocatalysts for advanced metal-air fuel cell systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...