Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Nanobiotechnology ; 22(1): 245, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735921

ABSTRACT

BACKGROUND: The general sluggish clearance kinetics of functional inorganic nanoparticles tend to raise potential biosafety concerns for in vivo applications. Renal clearance is a possible elimination pathway for functional inorganic nanoparticles delivered through intravenous injection, but largely depending on the surface physical chemical properties of a given particle apart from its size and shape. RESULTS: In this study, three small-molecule ligands that bear a diphosphonate (DP) group, but different terminal groups on the other side, i.e., anionic, cationic, and zwitterionic groups, were synthesized and used to modify ultrasmall Fe3O4 nanoparticles for evaluating the surface structure-dependent renal clearance behaviors. Systematic studies suggested that the variation of the surface ligands did not significantly increase the hydrodynamic diameter of ultrasmall Fe3O4 nanoparticles, nor influence their magnetic resonance imaging (MRI) contrast enhancement effects. Among the three particle samples, Fe3O4 nanoparticle coated with zwitterionic ligands, i.e., Fe3O4@DMSA, exhibited optimal renal clearance efficiency and reduced reticuloendothelial uptake. Therefore, this sample was further labeled with 99mTc through the DP moieties to achieve a renal-clearable MRI/single-photon emission computed tomography (SPECT) dual-modality imaging nanoprobe. The resulting nanoprobe showed satisfactory imaging capacities in a 4T1 xenograft tumor mouse model. Furthermore, the biocompatibility of Fe3O4@DMSA was evaluated both in vitro and in vivo through safety assessment experiments. CONCLUSIONS: We believe that the current investigations offer a simple and effective strategy for constructing renal-clearable nanoparticles for precise disease diagnosis.


Subject(s)
Kidney , Magnetic Resonance Imaging , Tomography, Emission-Computed, Single-Photon , Animals , Magnetic Resonance Imaging/methods , Mice , Tomography, Emission-Computed, Single-Photon/methods , Ligands , Kidney/diagnostic imaging , Kidney/metabolism , Cell Line, Tumor , Contrast Media/chemistry , Female , Mice, Inbred BALB C , Humans , Tissue Distribution , Neoplasms/diagnostic imaging , Magnetite Nanoparticles/chemistry , Nanoparticles/chemistry
2.
Small Methods ; 8(3): e2301479, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38009499

ABSTRACT

Nanomaterials are increasingly being employed for biomedical applications, necessitating a comprehensive understanding of their degradation behavior and potential toxicity in the biological environment. This study utilizes a continuous flow system to simulate the biologically relevant degradation conditions and investigate the effects of pH, protein, redox species, and chelation ligand on the degradation of iron oxide nanoparticles. The morphology, aggregation state, and relaxivity of iron oxide nanoparticles after degradation are systematically characterized. The results reveal that the iron oxide nanoparticles degrade at a significantly higher rate under the acidic environment. Moreover, incubation with bovine serum albumin enhances the stability and decreases the dissolution rate of iron oxide nanoparticles. In contrast, glutathione accelerates the degradation of iron oxide nanoparticles, while the presence of sodium citrate leads to the fastest degradation. This study reveals that iron oxide nanoparticles undergo degradation through various mechanisms in different biological microenvironments. Furthermore, the dissolution and aggregation of iron oxide nanoparticles during degradation significantly impact their relaxivity, which has implications for their efficacy as magnetic resonance imaging contrast agents in vivo. The results provide valuable insights for assessing biosafety and bridge the gap between fundamental research and clinical applications of iron oxide nanoparticles.


Subject(s)
Contrast Media , Ferric Compounds , Ferric Compounds/chemistry , Contrast Media/chemistry , Sodium Citrate , Magnetic Iron Oxide Nanoparticles
3.
ACS Appl Mater Interfaces ; 15(22): 26431-26441, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37219450

ABSTRACT

The easy recurrence and high metastasis of fatal tumors require the development of a combination therapy, which is able to overcome the drawbacks of monomodal strategies such as surgery, photodynamic therapy (PDT), and radiotherapy (RT). Taking the complementary advantages of PDT and RT, we present herein the integration of lanthanide-doped upconversion nanoparticles (UCNPs) with chlorin e6 (Ce6)-imbedded RBC membrane vesicles as a near-infrared-induced PDT agent for achieving synchronous depth PDT and RT with reduced radiation exposure. In such a nanoagent, gadolinium-doped UCNPs with strong X-ray attenuation ability act not only as a light transductor to activate the loaded photosensitizer Ce6 to allow PDT but also as a radiosensitizer to enhance RT. PDT with enhanced low-dose RT can achieve synergistic inhibition of tumor growth by producing reactive oxygen species to destroy local tumor cells and inducing strong T-cell-dependent immunogenic cell death to arrest systemic cancer metastasis. This combination of PDT and RT might be a potential appealing strategy for tumor eradication.


Subject(s)
Nanoparticles , Photochemotherapy , Porphyrins , Cell Line, Tumor , Biomimetics , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Combined Modality Therapy , Nanoparticles/therapeutic use , Porphyrins/pharmacology , Porphyrins/therapeutic use
4.
Nano Lett ; 23(11): 5381-5390, 2023 06 14.
Article in English | MEDLINE | ID: mdl-36996288

ABSTRACT

Intranasal administration was previously proposed for delivering drugs for central nervous system (CNS) diseases. However, the delivery and elimination pathways, which are very imperative to know for exploring the therapeutic applications of any given CNS drugs, remain far from clear. Because lipophilicity has a high priority in the design of CNS drugs, the as-prepared CNS drugs tend to form aggregates. Therefore, a PEGylated Fe3O4 nanoparticle labeled with a fluorescent dye was prepared as a model drug and studied to elucidate the delivery pathways of intranasally administered nanodrugs. Through magnetic resonance imaging, the distribution of the nanoparticles was investigated in vivo. Through ex vivo fluorescence imaging and microscopy studies, more precise distribution of the nanoparticles across the entire brain was disclosed. Moreover, the elimination of the nanoparticles from cerebrospinal fluid was carefully studied. The temporal dose levels of intranasally delivered nanodrugs in different parts of the brain were also investigated.


Subject(s)
Central Nervous System , Nanoparticles , Administration, Intranasal , Central Nervous System/metabolism , Brain/metabolism , Pharmaceutical Preparations/metabolism , Drug Delivery Systems/methods
5.
Nanoscale ; 15(8): 3991-3999, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36723217

ABSTRACT

Magnetic resonance imaging (MRI)/nuclear medicine imaging (NMI) dual-modality imaging based on radiolabeled nanoparticles has been increasingly exploited for accurate diagnosis of tumor and cardiovascular diseases by virtue of high spatial resolution and high sensitivity. However, significant challenges exist in pursuing truly clinical applications, including massive preparation and rapid radiolabeling of nanoparticles. Herein, we report a clinically translatable kit for the convenient construction of MRI/NMI nanoprobes relying on the flow-synthesis and anchoring group-mediated radiolabeling (LAGMERAL) of iron oxide nanoparticles. First, homogeneous iron oxide nanoparticles with excellent performance were successfully obtained on a large scale by flow synthesis, followed by the surface anchoring of diphosphonate-polyethylene glycol (DP-PEG) to simultaneously render the underlying nanoparticles biocompatible and competent in robust labeling of radioactive metal ions. Moreover, to enable convenient and safe usage in clinics, the DP-PEG modified nanoparticle solution was freeze-dried and sterilized to make a radiolabeling kit followed by careful evaluations of its in vitro and in vivo performance and applicability. The results showed that 99mTc labeled nanoprobes are effectively obtained with a labeling yield of over 95% in 30 minutes after simply injecting Na[99mTcO4] solution into the kit. In addition, the Fe3O4 nanoparticles sealed in the kit can well stand long-term storage even for 300 days without deteriorating the colloidal stability and radiolabeling yield. Upon intravenous injection of the as-prepared radiolabeled nanoprobes, high-resolution vascular images of mice were obtained by vascular SPECT imaging and magnetic resonance angiography, demonstrating the promising clinical translational value of our radiolabeling kit.


Subject(s)
Nanoparticles , Nuclear Medicine , Mice , Animals , Radionuclide Imaging , Tomography, Emission-Computed, Single-Photon/methods , Magnetic Resonance Imaging/methods , Polyethylene Glycols
6.
Molecules ; 27(20)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36296522

ABSTRACT

Hypoxia is a common biological condition in many malignant solid tumors that plays an imperative role in regulating tumor growth and impacting the treatment's therapeutic effect. Therefore, the hypoxia assessment is of great significance in predicting tumor development and evaluating its prognosis. Among the plenty of existing tumor diagnosis techniques, magnetic resonance imaging (MRI) offers certain distinctive features, such as being free of ionizing radiation and providing images with a high spatial resolution. In this study, we develop a fluorescent traceable and hypoxia-sensitive T1-weighted MRI probe (Fe3O4-Met-Cy5.5) via conjugating notable hypoxia-sensitive metronidazole moiety and Cy5.5 dye with ultrasmall iron oxide (Fe3O4) nanoparticles. The results of in vitro and in vivo experiments show that Fe3O4-Met-Cy5.5 has excellent performance in relaxivity, biocompatibility, and hypoxia specificity. More importantly, the obvious signal enhancement in hypoxic areas indicates that the probe has great feasibility for sensing tumor hypoxia via T1-weighted MRI. These promising results may unlock the potential of Fe3O4 nanoparticles as T1-weighted contrast agents for the development of clinical hypoxia probes.


Subject(s)
Magnetite Nanoparticles , Nanoparticles , Neoplasms , Humans , Contrast Media , Tumor Hypoxia , Metronidazole , Magnetic Resonance Imaging/methods , Neoplasms/diagnostic imaging , Neoplasms/pathology , Hypoxia/diagnostic imaging , Magnetic Iron Oxide Nanoparticles
7.
Nanomaterials (Basel) ; 12(15)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35957104

ABSTRACT

Iron oxide nanoparticles (IONPs) as magnetic resonance imaging (MRI) contrast agents have received considerable interest due to their superior magnetic properties. To increase the biocompatibility and blood circulation time, polyethylene glycol (PEG) is usually chosen to decorate IONPs. Although the surface effect induced by the PEGylation has an impact on the relaxometric properties of IONPs and can subsequently affect the imaging results, the occurrence of particle aggregation has troubled researchers to deeply explore this correlation. To shed light on this relationship, three diphosphonate PEGs with molecular weights of 1000, 2000, and 5000 Da were used to replace the hydrophobic oleate ligands of 3.6 nm and 10.9 nm IONPs. Then, the contrast enhancement properties of the resultant "aggregation-free" nanoparticles were carefully evaluated. Moreover, related theories were adopted to predict certain properties of IONPs and to compare with the experimental data, as well as obtain profound knowledge about the impacts of the PEG chain length on transverse relaxivity (r2) and longitudinal relaxivity (r1). It was found that r2 and the saturated magnetization of the IONPs, independent of particle size, was closely related to the chain length of PEG. The results unveiled the correlation between the chain length of the coated PEG and the relaxometric properties of IONPs, providing valuable information which might hold great promise in designing optimized, high-performance IONPs for MRI-related applications.

8.
ACS Appl Mater Interfaces ; 14(7): 8838-8846, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35133124

ABSTRACT

Nuclear medicine imaging has aroused great interest in the design and synthesis of versatile radioactive nanoprobes, while most of the methods developed for radiolabeling nanoprobes are difficult to satisfy the criteria of clinical translation, including easy operation, mild labeling conditions, high efficiency, and high radiolabeling stability. Herein, we demonstrated the universality of a simple but efficient radiolabeling method recently developed for constructing nuclear imaging nanoprobes, that is, ligand anchoring group-mediated radiolabeling (LAGMERAL). In this method, a diphosphonate-polyethylene glycol (DP-PEG) decorating on the surface of inorganic nanoparticles plays an essential role. In principle, owing to the strong binding affinity to a great variety of metal ions, it can not only endow the underlying nanoparticles containing metal ions including some main group metal ions, transition metal ions, and lanthanide metal ions with excellent colloidal stability and biocompatibility but also enable efficient radiolabeling through the diphosphonate group. Based on this assumption, inorganic nanoparticles such as Fe3O4 nanoparticles, NaGdF4:Yb,Tm nanoparticles, and Cu2-xS nanoparticles, as representatives of functional inorganic nanoparticles suitable for different imaging modalities including magnetic resonance imaging (MRI), upconversion luminescence imaging (UCL), and photoacoustic imaging (PAI), respectively, were chosen to be radiolabeled with different kinds of radionuclides such as SPECT nuclides (e.g., 99mTc), PET nuclides (e.g., 68Ga), and therapeutic SPECT nuclides (e.g., 177Lu) to demonstrate the reliability of the LAGMERAL approach. The experimental results showed that the obtained nanoprobes exhibited high radiolabeling stability, and the whole radiolabeling process had negligible impacts on the physical and chemical properties of the initial nanoparticles. Through passive targeting SPECT/MRI of glioma tumor, active targeting SPECT/UCL of colorectal cancer, and SPECT/PAI of lymphatic metastasis, the outstanding potentials of the resulting radioactive nanoprobes for sensitive tumor diagnosis were demonstrated, manifesting the feasibility and efficiency of LAGMERAL.


Subject(s)
Lanthanoid Series Elements , Nanoparticles , Nuclear Medicine , Lanthanoid Series Elements/chemistry , Luminescence , Magnetic Resonance Imaging , Nanoparticles/chemistry , Reproducibility of Results
9.
Article in English | MEDLINE | ID: mdl-34296533

ABSTRACT

As a research hotspot, the development of magnetic resonance imaging (MRI) contrast agents has attracted great attention over the past decades for improving the accuracy of diagnosis. Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles with core diameter smaller than 5.0 nm are expected to become a next generation of contrast agents owing to their excellent MRI performance, long blood circulation time upon proper surface modification, renal clearance capacity, and remarkable biosafety profile. On top of these merits, USPIO nanoparticles are used for developing not only T1 contrast agents, but also T2 /T1 switchable contrast agents via assembly/disassembly approaches. In recent years, as a new type of contrast agents, USPIO nanoparticles have shown considerable applications in the diagnosis of various diseases such as vascular pathological changes and inflammations apart from malignant tumors. In this review, we are focusing on the state-of-the-art developments and the latest applications of USPIO nanoparticles as MRI contrast agents to discuss their advantages and future prospects. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.


Subject(s)
Contrast Media , Magnetite Nanoparticles , Dextrans , Magnetic Resonance Imaging
10.
Small ; 17(51): e2104977, 2021 12.
Article in English | MEDLINE | ID: mdl-34651420

ABSTRACT

Radiolabeling counts for much in the functionalization of inorganic nanoparticles (NPs) because it endows NPs with high-sensitive imaging capacities apart from providing accurate pharmacokinetic information on the labeled particles, which makes the development of relevant radiolabeling chemistry highly desirable. Herein, a novel Ligand Anchoring Group MEdiated RAdioLabeling (LAGMERAL) method is reported, in which a polyethylene glycol (PEG) ligand with a diphosphonate (DP) terminal group plays a key role. It offers possibilities to radiolabel NPs through the spare coordination sites of the DP anchoring group. Through X-ray absorption spectroscopy studies, the coordination states of the foreign metal ions on the particle surface are investigated. In addition, radioactive Fe3 O4 NPs are prepared by colabeling the particles with 125 I at the outskirt of the particles through a phenolic hydroxyl moiety of the PEG ligand, and 99m Tc at the root of the ligand, respectively. In this way, the stabilities of these types of radiolabeling are compared both in vitro and in vivo to show the advantages of the LAGMERAL method. The outstanding stability of probe and simplicity of the labeling process make the current approach universal for creating advanced NPs with different combinations of functionalities of the inorganic NPs and radioactive properties of the metal radioisotopes.


Subject(s)
Nanoparticles , Polyethylene Glycols
11.
Nanomaterials (Basel) ; 11(10)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34685042

ABSTRACT

Precise diagnosis and monitoring of cancer depend on the development of advanced technologies for in vivo imaging. Owing to the merits of outstanding spatial resolution and excellent soft-tissue contrast, the application of magnetic resonance imaging (MRI) in biomedicine is of great importance. Herein, Angiopep-2 (ANG), which can simultaneously help to cross the blood-brain barrier and target the glioblastoma cells, was rationally combined with the 3.3 nm-sized ultra-small iron oxide (Fe3O4) to construct high-performance MRI nanoprobes (Fe3O4-ANG NPs) for glioblastoma diagnosis. The in vitro experiments show that the resultant Fe3O4-ANG NPs not only exhibit favorable relaxation properties and colloidal stability, but also have low toxicity and high specificity to glioblastoma cells, which provide critical prerequisites for the in vivo tumor imaging. Furthermore, in vivo imaging results show that the Fe3O4-ANG NPs exhibit good targeting ability toward subcutaneous and orthotopic glioblastoma model, manifesting an obvious contrast enhancement effect on the T1-weighted MR image, which demonstrates promising potential in clinical application.

12.
ACS Appl Mater Interfaces ; 12(44): 49407-49415, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33086013

ABSTRACT

Multimodal imaging-guided therapy holds great potential for precise theranostics of cancer metastasis. However, imaging agents enabling the convergence of complementary modalities with therapeutic functions to achieve perfect theranostics have been less exploited. This study reports the construction of a multifunctional nanoagent (FIP-99mTc) that comprises Fe3O4 for magnetic resonance imaging, radioactive 99mTc for single-photon-emission computed tomography, and IR-1061 to serve for the second near-infrared fluorescence imaging, photoacoustic imaging, and photothermal therapy treatment of cancer metastasis. The nanoagent possessed superior multimodal imaging capability with high sensitivity and resolution attributing to the complement of all the imaging modalities. Moreover, the nanoagent showed ideal photothermal conversion ability to effectively kill tumor cells at low concentration and power laser irradiation. In the in vivo study, FIP-99mTc confirmed the fast accumulation and clear delineation of metastatic lymph nodes within 1 h after administration. Attributing to the efficient uptake and photothermal conversion, FIP-99mTc could raise the temperature of metastatic lymph nodes to 54 °C within 10 min laser irradiation, so as to facilitate tumor cell ablation. More importantly, FIP-99mTc not only played an active role in suppressing cancer growth in metastatic lymph nodes with high efficiency but also could effectively prevent further lung metastasis after resection of the primary tumor. This study proposes a simple but effective theranostic approach toward lymph node metastasis.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/diagnostic imaging , Lymphatic Metastasis/diagnostic imaging , Multimodal Imaging , Nanocomposites/chemistry , Organotechnetium Compounds/pharmacology , Photothermal Therapy , Animals , Antineoplastic Agents/chemistry , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Hyperthermia, Induced , Lymphatic Metastasis/drug therapy , Mice , Organotechnetium Compounds/chemistry , Particle Size , Surface Properties , Theranostic Nanomedicine
13.
Bioconjug Chem ; 31(2): 315-331, 2020 02 19.
Article in English | MEDLINE | ID: mdl-31765561

ABSTRACT

Inorganic nanoparticles as a versatile nanoplatform have been broadly applied in the diagnosis and treatment of cancers due to their inherent superior physicochemical properties (including magnetic, thermal, optical, and catalytic performance) and excellent functions (e.g., imaging, targeted delivery, and controlled release of drugs) through surface functional modification or ingredient dopant. However, in practical biological applications, inorganic nanomaterials are relatively difficult to degrade and excrete, which induces a long residence time in living organisms and thus may cause adverse effects, such as inflammation and tissue cysts. Therefore, the development of biodegradable inorganic nanomaterials is of great significance for their biomedical application. This Review will focus on the recent advances of degradable inorganic nanoparticles for cancer theranostics with highlight on the degradation mechanism, aiming to offer an in-depth understanding of degradation behavior and related biomedical applications. Finally, key challenges and guidelines will be discussed to explore biodegradable inorganic nanomaterials with minimized toxicity issues, facilitating their potential clinical translation in cancer diagnosis and treatment.


Subject(s)
Nanoparticles/therapeutic use , Neoplasms/diagnosis , Neoplasms/therapy , Theranostic Nanomedicine/methods , Animals , Biocompatible Materials/analysis , Biocompatible Materials/metabolism , Biocompatible Materials/therapeutic use , Humans , Inorganic Chemicals/analysis , Inorganic Chemicals/metabolism , Inorganic Chemicals/therapeutic use , Nanoparticles/analysis , Nanoparticles/metabolism , Nanoparticles/ultrastructure
14.
Biomaterials ; 228: 119553, 2020 01.
Article in English | MEDLINE | ID: mdl-31689672

ABSTRACT

Nuclear medicine imaging has been developed as a powerful diagnostic approach for cancers by detecting gamma rays directly or indirectly from radionuclides to construct images with beneficial characteristics of high sensitivity, infinite penetration depth and quantitative capability. Current nuclear medicine imaging modalities mainly include single-photon emission computed tomography (SPECT) and positron emission tomography (PET) that require administration of radioactive tracers. In recent years, a vast number of radioactive tracers have been designed and constructed to improve nuclear medicine imaging performance toward early and accurate diagnosis of cancers. This review will discuss recent progress of nuclear medicine imaging tracers and associated biomedical imaging applications. Radiolabeling nanomaterials for rational development of tracers will be comprehensively reviewed with highlights on radiolabeling approaches (surface coupling, inner incorporation and interface engineering), providing profound understanding on radiolabeling chemistry and the associated imaging functionalities. The applications of radiolabeled nanomaterials in nuclear medicine imaging-related multimodality imaging will also be summarized with typical paradigms described. Finally, key challenges and new directions for future research will be discussed to guide further advancement and practical use of radiolabeled nanomaterials for imaging of cancers.


Subject(s)
Nanostructures , Neoplasms , Nuclear Medicine , Humans , Multimodal Imaging , Neoplasms/diagnostic imaging , Positron-Emission Tomography , Tomography, Emission-Computed, Single-Photon
15.
Nanoscale ; 10(46): 21772-21781, 2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30452038

ABSTRACT

The detection of lymph node metastasis is of great importance for therapy planning and prognosis of cancers, but remains challenging in the clinic. In the current study, we report a tumor-specific imaging probe constructed with NaGdF4:Yb,Tm,Ca@NaLuF4 core@shell upconversion nanoparticles showing distinctive near infrared emission. The following studies revealed that the characteristic Tm dopant emission at 804 nm showed a penetration depth up to 7.7 mm through multi-layered mice skin tissues, substantially greater than emissions at 655 nm and 541 nm typically from the widely used Er dopant, which is apparently favorable for sensitive tumor diagnosis. The cell binding assay further revealed that the anti-HER2 antibodies covalently attached on the particle surface endowed the nanoprobe with excellent binding specificity in targeting HER2-positive cancer cells in vitro, which further enabled the detection of lymph node metastasis of breast cancer in vivo in mice. In addition, the pharmacokinetics of the resulting nanoprobes were intensively studied through both upconversion luminescence imaging and SPECT imaging for comparing with that of the mother particles. The results obtained through both approaches were well consistent and revealed that the surface conjugation of antibodies largely altered the pharmacokinetic behaviors and substantially prolonged the blood half-life of the underlying nanoparticles, which was never reported before.


Subject(s)
Contrast Media/chemistry , Magnetite Nanoparticles/chemistry , Animals , Antibodies/chemistry , Antibodies/immunology , Breast Neoplasms/diagnosis , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Contrast Media/pharmacokinetics , Contrast Media/toxicity , Female , Humans , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Lymphatic Metastasis , Magnetite Nanoparticles/toxicity , Mice , Mice, Nude , Microscopy, Confocal , Radiopharmaceuticals/chemistry , Receptor, ErbB-2/immunology , Spectroscopy, Near-Infrared , Tissue Distribution , Tomography, Emission-Computed, Single-Photon , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...