Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 252: 126253, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37562475

ABSTRACT

This study outlines the synthesis of a novel, cost-effective composite material comprising calcium sulphate-modified biochar (Ca-BC) cross-linked with polyethyleneimine (PEI) and sodium alginate (SA), which was subsequently transformed into gel beads (Ca-BC@PEI-SA). These beads were engineered to enable effective cadmium ion (Cd(II)) adsorption from wastewater. Batch adsorption experiments were conducted to evaluate the effects of pH, contact time, temperature, and coexisting ions on adsorption performance. The isotherms and kinetics in the adsorption process were investigated. The results indicated that the removal of Cd(II) by Ca-BC@PEI-SA adheres more closely to the Langmuir model, with maximum adsorption capacities of 138.44 mg/g (15 °C), 151.98 mg/g (25 °C), and 165.56 mg/g (35 °C) at different temperatures. The pseudo-secondary model fit well with Cd(II) adsorption kinetics, suggesting that the removal process was a monolayer process controlled by chemisorption. Moreover, the mechanical strength of the Ca-BC@PEI-SA gel beads allowed easy recovery and reduced secondary contamination. In addition, the adsorption capacity remained nearly constant after four cycles. The main Cd(II) adsorption mechanisms involved surface complexation, ion exchange, and cation-π-bonding interactions.


Subject(s)
Water Pollutants, Chemical , Water Purification , Cadmium/analysis , Wastewater , Calcium Sulfate , Water Purification/methods , Charcoal , Adsorption , Kinetics , Alginates , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration
2.
Chem Commun (Camb) ; 59(8): 1054-1057, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36606455

ABSTRACT

A scalable, and cost-effective method was employed to prepare self-supported CuSn bimetallic catalyst on carbon paper. The obtained CuSn catalyst demonstrates high faradaic efficiency of CO around or above 90% at a broad potential range from -0.7 to -1.8 V vs. reversible hydrogen electrode, greatly surpassing Cu or Sn counterparts.


Subject(s)
Carbon Dioxide , Paper , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...