Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(21): 9091-9101, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38709279

ABSTRACT

People of all ages consume salt every day, but is it really just salt? Plastic nanoparticles [nanoplastics (NPs)] pose an increasing environmental threat and have begun to contaminate everyday salt in consumer goods. Herein, we developed a combined surface enhanced Raman scattering (SERS) and stimulated Raman scattering (SRS) approach that can realize the filtration, enrichment, and detection of NPs in commercial salt. The Au-loaded (50 nm) anodic alumina oxide substrate was used as the SERS substrate to explore the potential types of NP contaminants in salts. SRS was used to conduct imaging and quantify the presence of the NPs. SRS detection was successfully established through standard plastics, and NPs were identified through the match of the hydrocarbon group of the nanoparticles. Simultaneously, the NPs were quantified based on the high spatial resolution and rapid imaging of the SRS imaging platform. NPs in sea salts produced in Asia, Australasia, Europe, and the Atlantic were studied. We estimate that, depending on the location, an average person could be ingesting as many as 6 million NPs per year through the consumption of sea salt alone. The potential health hazards associated with NP ingestion should not be underestimated.


Subject(s)
Spectrum Analysis, Raman , Plastics , Nanoparticles , Sodium Chloride/chemistry
2.
J Am Chem Soc ; 146(10): 6580-6590, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38427385

ABSTRACT

The multiphase oxidation of sulfur dioxide (SO2) to form sulfate is a complex and important process in the atmosphere. While the conventional photosensitized reaction mainly explored in the bulk medium is reported to be one of the drivers to trigger atmospheric sulfate production, how this scheme functionalizes at the air-water interface (AWI) of aerosol remains an open question. Herein, employing an advanced size-controllable microdroplet-printing device, surface-enhanced Raman scattering (SERS) analysis, nanosecond transient adsorption spectrometer, and molecular level theoretical calculations, we revealed the previously overlooked interfacial role in photosensitized oxidation of SO2 in humic-like substance (HULIS) aerosol, where a 3-4 orders of magnitude increase in sulfate formation rate was speculated in cloud and aerosol relevant-sized particles relative to the conventional bulk-phase medium. The rapid formation of a battery of reactive oxygen species (ROS) comes from the accelerated electron transfer process at the AWI, where the excited triplet state of HULIS (3HULIS*) of the incomplete solvent cage can readily capture electrons from HSO3- in a way that is more efficient than that in the bulk medium fully blocked by water molecules. This phenomenon could be explained by the significantly reduced desolvation energy barrier required for reagents residing in the AWI region with an open solvent shell.

3.
Environ Sci Technol ; 57(50): 21448-21458, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38047763

ABSTRACT

The efficient elimination of per- and polyfluoroalkyl substances (PFASs) from the environment remains a huge challenge and requires advanced technologies. Herein, we demonstrate that perfluorooctanoic acid (PFOA) photochemical decomposition could be significantly accelerated by simply carrying out this process in microdroplets. The almost complete removal of 100 and 500 µg/L PFOA was observed after 20 min of irradiation in microdroplets, while this was achieved after about 2 h in the corresponding bulk phase counterpart. To better compare the defluorination ratio, 10 mg/L PFOA was used typically, and the defluorination rates in microdroplets were tens of times faster than that in the bulk phase reaction system. The high performances in actual water matrices, universality, and scale-up applicability were demonstrated as well. We revealed in-depth that the great acceleration is due to the abundance of the air-water interface in microdroplets, where the reactants concentration enrichment, ultrahigh interfacial electric field, and partial solvation effects synergistically promoted photoreactions responsible for PFOA decomposition, as evidenced by simulated Raman scattering microscopy imaging, vibrational Stark effect measurement, and DFT calculation. This study provides an effective approach and highlights the important roles of air-water interface of microdroplets in PFASs treatment.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Water , Caprylates/chemistry , Water Pollutants, Chemical/chemistry
4.
Inorg Chem ; 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38148524

ABSTRACT

Sulfur-doped graphdiyne at different sites has a tremendous impact on its electronic structure and properties. Due to the large number of S-doping sites, there is no comprehensive and systematic experimental and theoretical study regarding the identification of S-doped graphdiyne configurations. In this paper, X-ray photoelectron (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectra as well as geometries of 10 sulfur-doped graphdiyne molecules have been simulated at the density functional theory (DFT) level. Different types of carbon spectra were theoretically modeled to analyze the contribution of the spectra. Calculated results show that the NEXAFS spectra exhibit a clear dependence on the local structure. The theoretically simulated XPS spectra are in good agreement with the experimental spectra. The XPS spectra combined with the NEXAFS spectra can provide effective information for identifying the 10 S-doped conformations. Our research results provide further theoretical prediction and guidance for the experimental synthesis of S-doped graphdiyne, which solves the difficult problem of identification of S-doped carbon-based materials.

5.
PNAS Nexus ; 2(11): pgad389, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034096

ABSTRACT

The origin of life on Earth is an enigmatic and intricate conundrum that has yet to be comprehensively resolved despite recent significant developments within the discipline of archaeology and geology. Chemically, metal-sulfide minerals are speculated to serve as an important medium for giving birth in early life, while yet so far direct evidence to support the hypothesis for the highly efficient conversion of inorganic carbon into praxiological biomolecules remains scarce. In this work, we provide an initial indication that sphalerite, employed as a typical mineral, shows its enormous capability for promoting the conversion of inorganic carbon into elementary biomolecule formic acid (HCOOH) in airborne mineral-bearing aerosol microdroplet, which is over two orders of magnitude higher than that of the corresponding conventional bulk-like aqueous phase medium in the environment (e.g. river, lake, sea, etc.). This significant enhancement was further validated by a wide range of minerals and clays, including CuS, NiS, CoS, CdS, MnS, elemental sulfur, Arizona Test Dust, loess, nontronite, and montmorillonite. We reveal that the abundant interface of unique physical-chemical features instinct for aerosol or cloud microdroplets reduces the reaction energy barrier for the reaction, thus leading to extremely high HCOOH production (2.52 × 1014 kg year-1). This study unfolds unrecognized remarkable contributions of the considered scheme in the accumulation of prebiotic biomolecules in the ancient period of the Earth.

6.
Environ Sci Technol ; 57(46): 18203-18214, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37399235

ABSTRACT

The increasing prevalence of nanoplastics in the environment underscores the need for effective detection and monitoring techniques. Current methods mainly focus on microplastics, while accurate identification of nanoplastics is challenging due to their small size and complex composition. In this work, we combined highly reflective substrates and machine learning to accurately identify nanoplastics using Raman spectroscopy. Our approach established Raman spectroscopy data sets of nanoplastics, incorporated peak extraction and retention data processing, and constructed a random forest model that achieved an average accuracy of 98.8% in identifying nanoplastics. We validated our method with tap water spiked samples, achieving over 97% identification accuracy, and demonstrated the applicability of our algorithm to real-world environmental samples through experiments on rainwater, detecting nanoscale polystyrene (PS) and polyvinyl chloride (PVC). Despite the challenges of processing low-quality nanoplastic Raman spectra and complex environmental samples, our study demonstrated the potential of using random forests to identify and distinguish nanoplastics from other environmental particles. Our results suggest that the combination of Raman spectroscopy and machine learning holds promise for developing effective nanoplastic particle detection and monitoring strategies.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics , Spectrum Analysis, Raman , Algorithms , Machine Learning , Polystyrenes , Water
7.
J Phys Chem A ; 127(27): 5662-5672, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37368073

ABSTRACT

The ground-state electronic/geometrical structures of the three classical isomers Cs(15)-C84, C2(13)-C84, and C2(8)-C84 as well as the corresponding embedded derivatives U@Cs(15)-C84, YCN@C2(13)-C84, and U@C2(8)-C84 have been calculated at the density functional theory (DFT) level. Then, the isomers of C84 were theoretically identified by X-ray photoelectron spectroscopy (XPS) and near X-ray absorption fine-structure spectroscopy (NEXAFS). The spectral components of total spectra for carbon atoms in various local environments have been investigated. The ultraviolet-visible (UV-vis) absorption spectroscopies of U@Cs(15)-C84, YCN@C2(13)-C84, and U@C2(8)-C84 have also been performed utilizing time-dependent (TD) DFT calculations. The UV-vis spectra are in good agreement with the experimental results. These spectra provide an effective method for the identification of isomers. The results of this study can offer useful data for further experimental and theoretical studies using X-ray and UV-vis spectroscopy methods on freshly synthesized fullerene isomers and their derivatives.

8.
Angew Chem Int Ed Engl ; 62(27): e202304189, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37144910

ABSTRACT

Solar-driven CO2 reduction reaction (CO2 RR) is largely constrained by the sluggish mass transfer and fast combination of photogenerated charge carriers. Herein, we find that the photocatalytic CO2 RR efficiency at the abundant gas-liquid interface provided by microdroplets is two orders of magnitude higher than that of the corresponding bulk phase reaction. Even in the absence of sacrificial agents, the production rates of HCOOH over WO3 ⋅ 0.33H2 O mediated by microdroplets reaches 2536 µmol h-1 g-1 (vs. 13 µmol h-1 g-1 in bulk phase), which is significantly superior to the previously reported photocatalytic CO2 RR in bulk phase reaction condition. Beyond the efficient delivery of CO2 to photocatalyst surfaces within microdroplets, we reveal that the strong electric field at the gas-liquid interface of microdroplets essentially promotes the separation of photogenerated electron-hole pairs. This study provides a deep understanding of ultrafast reaction kinetics promoted by the gas-liquid interface of microdroplets and a novel way of addressing the low efficiency of photocatalytic CO2 reduction to fuel.

9.
J Phys Chem A ; 127(1): 250-260, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36595358

ABSTRACT

Fe(III)-oxalate complexes are ubiquitous in atmospheric environments, which can release reactive oxygen species (ROS) such as H2O2, O•2-, and OH• under light irradiation. Although Fe(III)-oxalate photochemistry has been investigated extensively, the understanding of its involvement in authentic atmospheric environments such as aerosol droplets is far from enough, since the current available knowledge has mainly been obtained in bulk-phase studies. Here, we find that the production of OH• by Fe(III)-oxalate in aerosol microdroplets is about 10-fold greater than that of its bulk-phase counterpart. In addition, in the presence of Fe(III)-oxalate complexes, the rate of photo-oxidation from SO2 to sulfate in microdroplets was about 19-fold faster than that in the bulk phase. The availability of efficient reactants and mass transfer due to droplet effects made dominant contributions to the accelerated OH• and SO42- formation. This work highlights the necessary consideration of droplet effects in atmospheric laboratory studies and model simulations.

10.
STAR Protoc ; 3(4): 101704, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36129823

ABSTRACT

Photochemical synthesis and photocatalysis in droplet microreactors represent promising approaches to relieve the global energy and environmental crises. Here, we describe a protocol for studying microdroplet photoreaction at an individual droplet level based on in situ micro-Raman spectroscopy. We provide details of superhydrophobic substrate preparation, microdroplets generation, photoreactions performing, and data analyses. In addition, we show the operational details of preliminary scale-up tests of microdroplet photoreaction for practical application. For complete details on the use and execution of this protocol, please refer to Li et al. (2022).


Subject(s)
Data Analysis , Spectrum Analysis, Raman
11.
Water Res ; 222: 118885, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35932701

ABSTRACT

Persulfate (PS, S2O82-) activation through transition metal sulfides (TMS) has gained increasing attention since it can decompose a wide variety of refractory halogenated organic compounds in groundwater and wastewater. However, the processes of PS activation by TMS and particularly the formation of •OH radical under anoxic and acidic conditions (pH ∼2.8) remain elusive. Herein, by employing mixed redox-couple-involved chalcopyrite (CuFeS2) (150 mg/L) nanoparticles for PS (3.0 mM) activation, 96% of trichloroethylene was degraded within 120 min at pH 6.8 under visible light irradiation. The combination of experimental studies and theoretical calculations suggested that the Cu(I)/Fe(III) mixed redox-couple in CuFeS2 plays a crucial role to activate PS. Cu(I) acted as an electron donor to transfer electron to Fe(III), then Fe(III) served as an electron transfer bridge as well as a catalytic center to further donate this received electron to the O-O bond of PS, thus yielding SO4•- for trichloroethylene oxidation. Moreover, for the first time, •OH radicals were found to form from the catalytic hydrolysis of PS onto CuFeS2 surface, where S2O82- anion was hydrolyzed to yield H2O2 and these ensuing H2O2 were further transformed into •OH radicals via photoelectron-assisted O-O bond cleavage step. Our findings offer valuable insights for understanding the mechanisms of PS activation by redox-couple- involved TMS, which could promote the design of effective activators toward PS decomposition for environmental remediation.


Subject(s)
Copper/chemistry , Groundwater , Trichloroethylene , Water Pollutants, Chemical , Catalysis , Ferric Compounds , Hydrogen Peroxide/chemistry , Hydrolysis , Oxidation-Reduction , Sulfates/chemistry , Sulfides/chemistry , Water Pollutants, Chemical/chemistry
12.
J Phys Chem A ; 126(5): 742-751, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35099953

ABSTRACT

X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectra, as well as the ground-state electronic/geometrical structures of the newly discovered two non-classical isomers C2-C76(NC2) and C1-C76(NC3) with their derivatives C2-C76(NC2)(CF3)14 and C1-C76(NC3)Cl24, as well as the non-IPR(isolated pentagon rule) isomer C1-#17418C76 with its embedded metal fullerene U@C1-#17418C76 have been calculated at the density functional theory (DFT) level. The electronic structure after chlorination is significantly different in the simulated X-ray spectrum. Both XPS and NEXAFS spectra reflect obvious isomer dependence, indicating that the "fingerprint" in X-ray spectroscopy can provide an effective means for the identification of the above-mentioned fullerene isomers. Time-dependent DFT was used to simulate the ultraviolet-visible absorption spectrum of U@C1-#17418C76. The calculated results are in good agreement with the experimental consequence. This work reveals that theoretically simulated X-ray and UV-vis spectroscopy techniques can provide valuable information to help researchers explore the electronic structure of fullerenes and the identification of isomers in future experimental and theoretical fields.

13.
J Hazard Mater ; 421: 126701, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34339984

ABSTRACT

Configuring reactive and stable catalytic interfaces is crucial to design efficient photocatalysts for Cr(VI) reduction. Herein, via the platinum decoration approach based on interfacial engineering, we developed an effective catalytic interface within novel semiconducting chalcopyrite quantum dots (Pt/CuFeS2 QDs). Benefiting from the catalytic merits of the Pt modulated interfacial structure and electronic structure, Pt/CuFeS2 QDs show a broader light absorption capability extending to near-infrared radiation (NIR) range with superior carriers separation performance and faster charge transfer efficiency, which delivers a three-folder faster photocatalytic Cr(VI) reduction efficiency comparing to the original CuFeS2 QDs. Density functional theory (DFT) calculations unravel that Pt atoms prefer to be anchored with the surface S atoms to form a stable interfacial structure with faster electron transfer and Cr(VI) reduction dynamics. This work demonstrates that platinum decoration based on interfacial engineering is an effective strategy to simultaneously modulate the band structure and accelerate the interfacial reaction dynamics for semiconductor photocatalysts, which paves the way for designing highly efficient photocatalysts for light-driven environmental and energy engineering applications.

14.
Front Bioeng Biotechnol ; 9: 751757, 2021.
Article in English | MEDLINE | ID: mdl-34722478

ABSTRACT

Chemodynamic therapy as an emerging therapeutic strategy has been implemented for oncotherapy. However, the reactive oxygen species can be counteracted by the exorbitant glutathione (GSH) produced by the tumor cells before exerting the antitumor effect. Herein, borneol (NB) serving as a monoterpenoid sensitizer, and copper sulfide (CuS NPs) as an NIR-II photothermal agent were loaded in a thermo-responsive vehicle (NB/CuS@PCM NPs). Under 1,060-nm laser irradiation, the hyperthermia produced by CuS NPs can be used for photothermal therapy and melt the phase change material for drug delivery. In the acidity microenvironment, the CuS NPs released from NB/CuS@PCM NPs could degrade to Cu2+, then Cu2+ was reduced to Cu+ during the depletion of GSH. As Fenton-like catalyst, the copper ion could convert hydrogen peroxide into hydroxyl radicals for chemodynamic therapy. Moreover, the NB originated from NB/CuS@PCM NPs could increase the intracellular ROS content to improve the treatment outcome of chemodynamic therapy. The animal experimental results indicated that the NB/CuS@PCM NPs could accumulate at the tumor site and exhibit an excellent antitumor effect. This work confirmed that the combination of oxidative stress-induced damage and photothermal therapy is a potential therapeutic strategy for cancer treatment.

15.
Environ Sci Technol ; 54(13): 8022-8031, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32412745

ABSTRACT

Iron-based nanosized ecomaterials for efficient Cr(VI) removal are of great interest to environmental chemists. Herein, inspired by the "mixed redox-couple" cations involved in the crystal structure and the quantum confinement effects resulting from the particle size, a novel type of iron-based ecomaterial, semiconducting chalcopyrite quantum dots (QDs), was developed and used for Cr(VI) removal. A high removal capacity up to 720 mg/g was achieved under optimal pH conditions, which is superior to those of the state-of-the-art nanomaterials for Cr(VI) removal. The mechanism of Cr(VI) removal was elucidated down to an atomic scale by combining comprehensive characterization techniques with adsorption kinetic experiments and DFT calculations. The experimental results revealed that the material was a good electron donor semiconductor attributed to the existence of "mixed redox couple of Cu(I)-S-Fe(III)" in the crystal structure. With the size-dependent quantum confinement effect and the high surface area, the semiconducting chalcopyrite QDs could effectively remove Cr(VI) from aqueous solution through a syngenetic photocatalytic reduction and adsorption mechanism. This study not only reports the design histogram of the iron-based CuFeS2 QD ecomaterial for efficient Cr(VI) removal but also paves the way for understanding the atomic-scale mechanism behind the syngenetic effects of using the QD semiconducting material for Cr(VI) removal.


Subject(s)
Quantum Dots , Water Pollutants, Chemical , Adsorption , Chromium/analysis , Copper , Ferric Compounds , Oxidation-Reduction , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...