Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(6): e0234062, 2020.
Article in English | MEDLINE | ID: mdl-32497093

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most lethal and malignant tumours worldwide. New therapeutic targets for HCC are urgently needed. CYCLOPS (copy number alterations yielding cancer liabilities owing to partial loss) genes have been noted to be associated with cancer-targeted therapies. Therefore, we intended to explore the effects of the CYCLOPS gene RBM17 on HCC oncogenesis to determine if it could be further used for targeted therapy. METHODS: We collected data on 12 types of cancer from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) queries for comparison with adjacent non-tumour tissues. RBM17 expression levels, clinicopathological factors and survival times were analysed. RNAseq data were downloaded from the Encyclopaedia of DNA Elements database for molecular mechanism exploration. Two representative HCC cell models were built to observe the proliferation capacity of HCC cells when RBM17 expression was inhibited by shRBM17. Cell cycle progression and apoptosis were also examined to investigate the pathogenesis of RBM17. RESULTS: Based on 6,136 clinical samples, RBM17 was markedly overexpressed in most cancers, especially HCC. Moreover, data from 442 patients revealed that high RBM17 expression levels were related to a worse prognosis. Overexpression of RBM17 was related to the iCluster1 molecular subgroup, TNM stage, and histologic grade. Pathway analysis of RNAseq data suggested that RBM17 was involved in mitosis. Further investigation revealed that the proliferation rates of HepG2 (P = 0.003) and SMMC-7721 (P = 0.030) cells were significantly reduced when RBM17 was knocked down. In addition, RBM17 knockdown also arrested the progression of the cell cycle, causing cells to halt at the G2/M phase. Increased apoptosis rates were also found in vitro. CONCLUSION: These results suggest that RBM17 is a potential therapeutic target for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular/genetics , DNA Copy Number Variations , Liver Neoplasms/genetics , RNA Splicing Factors/genetics , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/pathology , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Gene Silencing , Humans , Liver Neoplasms/diagnosis , Liver Neoplasms/pathology , Prognosis , RNA Splicing Factors/deficiency
2.
PLoS One ; 15(3): e0230905, 2020.
Article in English | MEDLINE | ID: mdl-32226026

ABSTRACT

As cancer mortality is high in most regions of the world, early screening of cancer has become increasingly important. Minimally invasive screening programs that use peripheral blood mononuclear cells (PBMCs) are a new and reliable strategy that can achieve early detection of tumors by identifying marker genes. From 797 datasets, four (GSE12771, GSE24536, GSE27562, and GSE42834) including 428 samples, 236 solid tumor cases, and 192 healthy controls were chosen according to the inclusion criteria. A total of 285 genes from among 440 reported genes were selected by meta-analysis. Among them, 4 of the top significantly differentially expressed genes (ANXA1, IFI44, IFI44L, and OAS1) were identified as marker genes of PBMCs. Pathway enrichment analysis identified, two significant pathways, the 'primary immunodeficiency' pathway and the 'cytokine-cytokine receptor interaction' pathway. Protein- protein interaction (PPI) network analysis revealed the top 27 hubs with a degree centrality greater than 23 to be hub genes. We also identified 3 modules in Molecular Complex Detection (MCODE) analysis: Cluster 1 (related to ANXA1), Cluster 2 (related to IFI44 and IFI44L) and Cluster 3 (related to OAS1). Among the 4 marker genes, IFI44, IFI44L, and OAS1 are potential diagnostic biomarkers, even though their results were not as remarkable as those for ANXA1 in our study. ANXA1 is involved in the immunosuppressive mechanism in tumor-bearing hosts and may be used in a new strategy involving the use of the host's own immunity to achieve tumor suppression.


Subject(s)
Early Detection of Cancer , Genetic Markers/genetics , Monocytes/metabolism , Neoplasms/diagnosis , Neoplasms/genetics , Gene Regulatory Networks , Humans , Molecular Sequence Annotation , Neoplasms/blood , Neoplasms/metabolism , Oligonucleotide Array Sequence Analysis , Protein Interaction Mapping
SELECTION OF CITATIONS
SEARCH DETAIL
...