Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3509, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664454

ABSTRACT

Commercial wearable piezoelectric sensors possess excellent anti-interference stability due to their electronic packaging. However, this packaging renders them barely breathable and compromises human comfort. To address this issue, we develop a PVDF piezoelectric nanoyarns with an ultrahigh strength of 313.3 MPa, weaving them with different yarns to form three-dimensional piezoelectric fabric (3DPF) sensor using the advanced 3D textile technology. The tensile strength (46.0 MPa) of 3DPF exhibits the highest among the reported flexible piezoelectric sensors. The 3DPF features anti-gravity unidirectional liquid transport that allows sweat to move from the inner layer near to the skin to the outer layer in 4 s, resulting in a comfortable and dry environment for the user. It should be noted that sweating does not weaken the piezoelectric properties of 3DPF, but rather enhances. Additionally, the durability and comfortability of 3DPF are similar to those of the commercial cotton T-shirts. This work provides a strategy for developing comfortable flexible wearable electronic devices.

2.
Nanoscale Adv ; 6(7): 1800-1821, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38545292

ABSTRACT

Metal-organic frameworks (MOFs), a burgeoning class of coordination polymers, have garnered significant attention due to their outstanding structure, porosity, and stability. They have been extensively studied in catalysis, energy storage, water harvesting, selective gas separation, and electrochemical applications. Recent advancements in post-synthetic strategies, surface functionality, and biocompatibility have expanded the application scope of MOFs, particularly in various biomedical fields. Herein, we review MOF-based nanomaterials bioimaging nanoplatforms in magnetic resonance imaging, computed tomography, and fluorescence imaging. MOFs serve as the foundation for biosensors, demonstrating efficiency in sensing H2O2, tumor biomarkers, microRNA, and living cancer cells. MOF-based carriers are well designed in drug delivery systems and anticancer treatment therapies. Additionally, we examine the challenges and prospects of MOFs in surface modification, release of metal ions, and interaction with intracellular components, as well as their toxicity and long-term effects.

3.
Adv Mater ; 36(23): e2308748, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38404231

ABSTRACT

Bone implants for different body parts require varying mechanical properties, dimensions, and biodegradability rates. Currently, it is still challenging to produce artificial bones with perfect compatibility with human bones. In this study, a silk-fabric reinforced silk material (SFS) composed of pure silk with exceptional biocompatibility, osteogenesis, and biodegradability is reported, and demonstrates its outstanding performance as a bone implant material. The SFS is fabricated using a simple hot-pressing technique, with degummed silk fabric as the reinforcement and silk fibroin as the matrix. The SFS as a self-reinforced composite, has exceptional mechanical properties due to the almost perfect interface between the matrix and reinforcement. More importantly, its mechanical properties, biodegradability rates, and density can be tailored by adjusting the reinforcement structure and the ratio of the reinforcement to the matrix to align with the requirements for bone implantation in different parts of the human body. Besides, the SFS can improve osteoblastic proliferation and increase osteogenic activity, which is not the case with clinically used titanium alloy artificial bone. Therefore, the SFS holds significant potential to replace conventional metal or ceramic implants in the field of medical fracture repair.


Subject(s)
Osteogenesis , Silk , Silk/chemistry , Osteogenesis/drug effects , Animals , Materials Testing , Bone Substitutes/chemistry , Cell Proliferation/drug effects , Humans , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , Biocompatible Materials/chemistry , Mice , Fibroins/chemistry , Bone and Bones
4.
Adv Healthc Mater ; 13(13): e2304676, 2024 May.
Article in English | MEDLINE | ID: mdl-38294131

ABSTRACT

Adhesive hydrogel holds huge potential in biomedical applications, such as hemostasis and emergent wound management during outpatient treatment or surgery. However, most adhesive hydrogels underperform to offer robust adhesions on the wet tissue, increasing the risk of hemorrhage and reducing the fault tolerance of surgery. To address this issue, this work develops a polysaccharide-based bioadhesive hydrogel tape (ACAN) consisting of dual cross-linking of allyl cellulose (AC) and carboxymethyl chitosan (CMCS). The hygroscopicity of AC and CMCS networks enables ACAN to remove interfacial water from the tissue surface and initializes a physical cross-link instantly. Subsequently, covalent cross-links are developed with amine moieties to sustain long-term and robust adhesion. The dual cross-linked ACAN also has good cytocompatibility with controllable mechanical properties matching to the tissue, where the addition of CMCS provides remarkable antibacterial properties and hemostatic capability. Moreover, compared with commercially available 3 M film, ACAN provides an ultrafast wound healing on tissue. The ACAN hybrid hydrogels have advantages such as biocompatibility and antibacterial, hemostatic, and wound healing properties, shedding new light on first-aid tape design and advancing the cellulose-based materials technology for high-performance biomedical applications.


Subject(s)
Cellulose , Chitosan , Hydrogels , Wound Healing , Chitosan/chemistry , Chitosan/analogs & derivatives , Cellulose/chemistry , Cellulose/analogs & derivatives , Cellulose/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Wound Healing/drug effects , Animals , Mice , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cross-Linking Reagents/chemistry , Hemostatics/chemistry , Hemostatics/pharmacology , Humans
5.
Environ Res ; 248: 118282, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38295974

ABSTRACT

The escalating consumer demand for crabs results in a growing amount of waste, including shells, claws, and other non-edible parts. The resulting crab shell waste (CSW) is disposed of via incineration or landfills which causes environmental pollution. CSW represents a potential biological resource that can be transformed into valuable resources via pyrolysis technique. In this study, microwave pyrolysis of CSW using self-purging, vacuum, and steam activation techniques was examined to determine the biochar production yield and its performance in treating palm oil mill effluent (POME). The biochar produced through microwave pyrolysis exhibits yields ranging from 50 to 61 wt%, showing a hard texture, low volatile matter content (≤34.1 wt%), and high fixed carbon content (≥58.3 wt%). The KOH-activated biochar demonstrated a surface area of up to 177 m2/g that is predominantly composed of mesopores, providing a good amount of adsorption sites for use as adsorbent. The biochar activated with steam removed 8.3 mg/g of BOD and 42 mg/g of COD from POME. The results demonstrate that microwave pyrolysis of CSW is a promising technology to produce high-quality biochar as an adsorbent for POME treatment.


Subject(s)
Brachyura , Charcoal , Animals , Palm Oil , Microwaves , Pyrolysis , Steam , Industrial Waste/analysis
6.
Int J Biol Macromol ; 256(Pt 2): 128399, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38007014

ABSTRACT

To develop a green and facile adsorbent for removing indoor polluted formaldehyde (HCHO) gas, the biomass porous nanofibrous membranes (BPNMs) derived from microcrystalline cellulose/chitosan were fabricated by electrospinning. The enhanced chemical adsorption sites with diverse oxygen (O) and nitrogen (N)-containing functional groups were introduced on the surface of BPNMs by non-thermal plasma modification under carbon dioxide (CO2) and nitrogen (N2) atmospheres. The average nanofiber diameters of nanofibrous membranes and their nanomechanical elastic modulus and hardness values decreased from 341 nm to 175-317 nm and from 2.00 GPa and 0.25 GPa to 1.70 GPa and 0.21 GPa, respectively, after plasma activation. The plasma-activated nanofibers showed superior hydrophilicity (WCA = 0°) and higher crystallinity than that of the control. The optimal HCHO adsorption capacity (134.16 mg g-1) of BPNMs was achieved under a N2 atmosphere at a plasma power of 30 W and for 3 min, which was 62.42 % higher compared with the control. Pyrrolic N, pyridinic N, CO and O-C=O were the most significant O and N-containing functional groups for the improved chemical adsorption of the BPNMs. The adsorption mechanism involved a synergistic combination of physical and chemical adsorption. This study provides a novel strategy that combines clean plasma activation with electrospinning to efficiently remove gaseous HCHO.


Subject(s)
Cellulose , Chitosan , Nanofibers , Nanofibers/chemistry , Chitosan/chemistry , Gases , Adsorption , Porosity , Formaldehyde/chemistry , Nitrogen
7.
Nanomicro Lett ; 16(1): 36, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38019340

ABSTRACT

MXene, a transition metal carbide/nitride, has been prominent as an ideal electrochemical active material for supercapacitors. However, the low MXene load limits its practical applications. As environmental concerns and sustainable development become more widely recognized, it is necessary to explore a greener and cleaner technology to recycle textile by-products such as cotton. The present study proposes an effective 3D fabrication method that uses MXene to fabricate waste denim felt into ultralight and flexible supercapacitors through needling and carbonization. The 3D structure provided more sites for loading MXene onto Z-directional fiber bundles, resulting in more efficient ion exchange between the electrolyte and electrodes. Furthermore, the carbonization process removed the specific adverse groups in MXenes, further improving the specific capacitance, energy density, power density and electrical conductivity of supercapacitors. The electrodes achieve a maximum specific capacitance of 1748.5 mF cm-2 and demonstrate remarkable cycling stability maintaining more than 94% after 15,000 galvanostatic charge/discharge cycles. Besides, the obtained supercapacitors present a maximum specific capacitance of 577.5 mF cm-2, energy density of 80.2 µWh cm-2 and power density of 3 mW cm-2, respectively. The resulting supercapacitors can be used to develop smart wearable power devices such as smartwatches, laying the foundation for a novel strategy of utilizing waste cotton in a high-quality manner.

8.
ACS Nano ; 17(21): 21073-21082, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37874666

ABSTRACT

Body temperature is an important indicator of human health. The traditional mercury and medical electronic thermometers have a slow response (≥1 min) and can not be worn for long to achieve continuous temperature monitoring due to their rigidity. In this work, we prepared a skin-core structure polyurethane (PU)/graphene encapsulated poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) temperature-sensitive fiber in one step by combining wet spinning technology with impregnation technology. The composite fiber has high sensitivity (-1.72%/°C), super-resolution (0.1 °C), fast time response (17 s), antisweat interference, and high linearity (R2 = 0.98) in the temperature sensing range of 30-50 °C. The fiber is strong enough to be braided into the temperature-sensitive fabric with commercial cotton yarns. The fabric with good comfort and durability can be arranged in the armpit position of the cloth to realize real-time body temperature monitoring without interruption during daily activities. Through Bluetooth wireless transmission, body temperature can be monitored in real-time and displayed on mobile phones to the parents or guardians. Overall, the fiber-based temperature sensor will significantly improve the practical applications of wearable temperature sensors in intelligent medical treatment due to its sensing stability, comfort, and durability.


Subject(s)
Graphite , Polyurethanes , Humans , Temperature , Body Temperature
9.
Molecules ; 28(16)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37630310

ABSTRACT

The development of the paper industry has led to the discharge of a large amount of papermaking waste liquid containing lignosulfonate. These lignin black liquids cause a lot of pollution in nature, which runs counter to the current environmental protection strategy under the global goal. Through the development and use of lignosulfonate in papermaking waste liquid to increase the utilization of harmful substances in waste liquid, we aim to promote waste liquid treatment and reduce environmental pollution. This paper proposes a new strategy to synthesize novel glue-free biocomposites with high-performance interfacial compatibility from papermaking by-product sodium lignosulfonate/chitosan (L/C) and waste bamboo. This L/C bamboo biocomposite material has good mechanical properties and durability, low formaldehyde emissions, a high recovery rate, meets the requirements of wood-based panels, and reduces environmental pollution. This method is low in cost, has the potential for large-scale production, and can effectively reduce the environmental pollution of the paper industry, promoting the recycling of biomass and helping the future manufacture of glue-free panels, which can be widely used in the preparation of bookcase, furniture, floor and so on.

10.
Environ Pollut ; 336: 122451, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37648056

ABSTRACT

The detrimental impact of volatile organic compounds on the surroundings is widely acknowledged, and effective solutions must be sought to mitigate their pollution. Adsorption treatment is a cost-effective, energy-saving, and flexible solution that has gained popularity. Biomass is an inexpensive, naturally porous material with exceptional adsorbent properties. This article examines current research on volatile organic compounds adsorption using biomass, including the composition of these compounds and the physical (van der Waals) and chemical mechanisms (Chemical bonding) by which porous materials adsorb them. Specifically, the strategic modification of the surface chemical functional groups and pore structure is explored to facilitate optimal adsorption, including pyrolysis, activation, heteroatom doping and other methods. It is worth noting that biomass adsorbents are emerging as a highly promising strategy for green treatment of volatile organic compounds pollution in the future. Overall, the findings signify that biomass modification represents a viable and competent approach for eliminating volatile organic compounds from the environment.

11.
J Environ Manage ; 344: 118718, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37541001

ABSTRACT

Antibiotic-containing wastewater is a typical biochemical refractory organic wastewater and general treatment methods cannot effectively and quickly degrade the antibiotic molecules. In this study, a novel boron-doped diamond (BDD) pulse electrochemical oxidation (PEO) technology was proposed for the efficient removal of levofloxacin (LFXN) from wastewater. The effects of current density (j), initial pH (pH0), frequency (f), electrolyte types and initial concentration (c0(LFXN)) on the degradation of LFXN were systematically investigated. The degradation kinetics under four different processes have also been studied. The possible degradation mechanism of LFXN was proposed by Density functional theory calculation and analysis of degradation intermediates. The results showed that under the optimal parameters, the COD removal efficiency (η(COD)) was 94.4% and the energy consumption (EEC) was 81.43 kWh·m-3 at t = 120 min. The degradation of LFXN at pH = 2.8/c(H2O2) followed pseudo-first-order kinetics. The apparent rate constant was 1.33 × 10-2 min-1, which was much higher than other processes. The degradation rate of LFXN was as follows: pH = 2.8/c(H2O2) > pH = 2.8 > pH = 7/c(H2O2) > pH = 7. Ten aromatic intermediates were formed during the degradation of LFXN, which were further degraded to F-, NH4+, NO3-, CO2 and H2O. This study provides a promising approach for efficiently treating LFXN antibiotic wastewater by pulsed electrochemical oxidation with a BDD electrode without adding H2O2.


Subject(s)
Wastewater , Water Pollutants, Chemical , Anti-Bacterial Agents , Levofloxacin/analysis , Hydrogen Peroxide , Water Pollutants, Chemical/chemistry , Boron/chemistry , Diamond/chemistry , Oxidation-Reduction , Electrodes
12.
Sci Total Environ ; 884: 163741, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37120025

ABSTRACT

Wood-based panels provide efficient alternatives to materials such as plastics derived from traditional petroleum sources and thereby help to mitigate greenhouse gas emissions. Unfortunately, using indoor manufactured panel products also results in significant emissions of volatile organic compounds including olefins, aromatic and ester compounds, which negatively affect human health. This paper highlights recent developments and notable achievements in the field of indoor hazardous air treatment technologies to guide future research toward environmentally friendly and economically feasible directions that may have a significant impact on the improvement of human settlements. Summarizing and synthesizing the principles, advantages, and limitations of different technologies can assist policymakers and engineers in identifying the most appropriate technology for a particular air pollution control program based on criteria such as cost-effectiveness, efficiency, and environmental impact. In addition, insights into the development of indoor air pollution control technologies are provided and potential areas for innovation, improvement of existing technologies, and development of new technologies are identified. Finally, the authors also hope that this sub-paper will raise public awareness of indoor air pollution issues and promote a better understanding of the importance of indoor air pollution control technologies for public health, environmental protection, and sustainable development.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Petroleum , Volatile Organic Compounds , Humans , Volatile Organic Compounds/analysis , Wood/chemistry , Air Pollution, Indoor/prevention & control , Air Pollution, Indoor/analysis , Environment , Air Pollutants/analysis
13.
Front Chem ; 11: 1119215, 2023.
Article in English | MEDLINE | ID: mdl-36909714

ABSTRACT

The recalcitrant structure of raw poplar limited the production of fermentable sugars when applied as the material in the pretreatment of biochemical conversions. Phosphoric acid pretreatment is an efficient method to destroy the compact lignocellulose matrix presence in the poplar. In this study, phosphoric acid pretreatment of poplar was optimised by an orthogonal experimental design [L9(33)] to improve enzymatic digestibility through investigating the effects of reaction temperature, time duration, and phosphoric acid concentration. The optimal conditions were selected based on the variance of chemical compositions, hemicellulose removal ratio, and delignification of the woody material after pretreatment. The optimum enzymatic hydrolysis yield of up to 73.44% was obtained when the phosphoric acid pretreatment performed at 190°C for 150 min under 1.5% of v/v phosphoric acid concentration.

14.
Polymers (Basel) ; 15(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36987111

ABSTRACT

Water pollution has spurred the development of membrane separation technology as a potential means of solving the issue. In contrast to the irregular and asymmetric holes that are easily made during the fabrication of organic polymer membranes, forming regular transport channels is essential. This necessitates the use of large-size, two-dimensional materials that can enhance membrane separation performance. However, some limitations regarding yield are associated with preparing large-sized MXene polymer-based nanosheets, which restrict their large-scale application. Here, we propose a combination of wet etching and cyclic ultrasonic-centrifugal separation to meet the needs of the large-scale production of MXene polymers nanosheets. It was found that the yield of large-sized Ti3C2Tx MXene polymers nanosheets reached 71.37%, which was 2.14 times and 1.77 times higher than that prepared with continuous ultrasonication for 10 min and 60 min, respectively. The size of the Ti3C2Tx MXene polymers nanosheets was maintained at the micron level with the help of the cyclic ultrasonic-centrifugal separation technology. In addition, certain advantages of water purification were evident due to the possibility of attaining the pure water flux of 36.5 kg m-2 h-1 bar-1 for the Ti3C2Tx MXene membrane prepared with cyclic ultrasonic-centrifugal separation. This simple method provided a convenient way for the scale-up production of Ti3C2Tx MXene polymers nanosheets.

15.
Nanomaterials (Basel) ; 13(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36677977

ABSTRACT

As a potential therapeutic agent, the clinical application of S-nitrosoglutathione (GSNO) is limited because of its instability. Therefore, different formulations have been developed to protect GSNO from degradation, delivery and the release of GSNO at a physiological concentration in the active position. Due to the high water-solubility and small molecular-size of GSNO, the biggest challenges in the encapsulation step are low encapsulation efficiency and burst release. This review summarizes the different nano/micro-formulation strategies of a GSNO related delivery system to provide references for subsequent researchers interested in GSNO encapsulation.

16.
Sci Total Environ ; 864: 160990, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36539095

ABSTRACT

Traditional disposal of animal manures and lignocellulosic biomass is restricted by its inefficiency and sluggishness. To advance the carbon management and greenhouse gas mitigation, this review scrutinizes the effect of pyrolysis in promoting the sustainable biomass and manure disposal as well as stimulating the biochar industry development. This review has examined the advancement of pyrolysis of animal manure (AM) and lignocellulosic biomass (LB) in terms of efficiency, cost-effectiveness, and operability. In particular, the applicability of pyrolysis biochar in enhancing the crops yields via soil remediation is highlighted. Through pyrolysis, the heavy metals of animal manures are fixated in the biochar, thereby both soil contamination via leaching and heavy metal uptake by crops are minimized. Pyrolysis biochar is potentially use in soil remediation for agronomic and environmental co-benefits. Fast pyrolysis assures high bio-oil yield and revenue with better return on investment whereas slow pyrolysis has low revenue despite its minimum investment cost because of relatively low selling price of biochar. For future commercialization, both continuous reactors and catalysis can be integrated to pyrolysis to ameliorate the efficiency and economic value of pyrolysis biochar.


Subject(s)
Metals, Heavy , Soil , Animals , Manure , Pyrolysis , Biomass , Metals, Heavy/analysis , Charcoal , Crops, Agricultural , Technology
17.
Environ Res ; 218: 114967, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36455630

ABSTRACT

We analyzed the problematic textile fiber waste as potential precursor material to produce multilayer cotton fiber biocomposite. The properties of the products were better than the current dry bearing type particleboards and ordinary dry medium-density fiberboard in terms of the static bending strength (67.86 MPa), internal bonding strength (1.52 MPa) and water expansion rate (9.57%). The three-layer, four-layer and five-layer waste cotton fiber composite (WCFC) were tried in the experiment, the mechanical properties of the three-layer WCFC are insufficient, the five-layer WCFC is too thick and the four-layer WCFC had the best comprehensive performance. The cross-section morphology of the four-layer WCFC shows a dense structure with a high number of adhesives attached to the fiber. The hardness and stiffness of the four-layer cotton fiber composite enhanced by the high crystallinity of cellulose content, and several chemical bondings were presence in the composites. Minimum mass loss (30%) and thermal weight loss rate (0.70%/°C) was found for the four-layer WCFC. Overall, our findings suggested that the use of waste cotton fiber (WCF) to prepare biocomposite with desirable physical and chemical properties is feasible, and which can potentially be used as building material, furniture and automotive applications.


Subject(s)
Cotton Fiber , Textiles , Cellulose/chemistry
18.
Sci Total Environ ; 856(Pt 1): 158798, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36116663

ABSTRACT

The rapid development of the textile industry and improvement of people's living standards have led to the production of cotton textile and simultaneously increased the production of textile wastes. Cotton is one of the most common textile materials, and the waste cotton accounts for 24% of the total textile waste. To effectively manage the waste, recycling and reusing waste cotton are common practices to reduce global waste production. This paper summarizes the characteristics of waste cotton and high-value products derived from waste cotton (e.g., yarns, composite reinforcements, regenerated cellulose fibers, cellulose nanocrystals, adsorptive materials, flexible electronic devices, and biofuels) via mechanical, chemical, and biological recycling methods. The advantages and disadvantages of making high-value products from waste cotton are summarized and discussed. New technologies and products for recycling waste cotton are proposed, providing a guideline and direction for merchants and researchers. This review paper can shed light on converting textile wastes other than cotton (e.g., bast, silk, wool, and synthetic fibers) into value-added products.


Subject(s)
Recycling , Textiles , Humans , Animals , Textile Industry , Biofuels , Silk
19.
Chemosphere ; 309(Pt 1): 136624, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36181838

ABSTRACT

Most biomass is composted into low-grade biofertilizer or processed into energy fuel for burning. At the same time, waste palm shell is potentially converted into highly porous biochar for dechlorination in water treatment. A single-mode microwave activation was developed to perform microwave activation that incorporated the application of steam, KOH, and a physiochemical process. The single-mode microwave activation was performed at the activation temperature ranging from 550-600 °C and recorded a short process duration of 5 min. The steam-activated biochar showed a mass yield of 88.3 wt%, a surface area of 527.4 m2/g, and a dechlorination efficiency of 25.5 mg/g. KOH-activated biochar showed a mass yield of 90.5 wt%, a surface area of 301.1 m2/g and a dechlorination efficiency of 24.0 mg/g. The physiochemical activated biochar showed the highest pores surface area of 717.8 m2/g and dechlorination efficiency of 35.8 mg/g but the lowest mass yield of 77.6 wt%. The results demonstrate that the greater the surface area, the higher the dechlorination efficiency. Using microwave heating and physiochemical activation technology demonstrates a promising way to produce activated biochar for the dechlorination of drinking water.


Subject(s)
Drinking Water , Water Purification , Microwaves , Steam , Porosity
20.
ACS Appl Mater Interfaces ; 14(41): 47176-47187, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36214472

ABSTRACT

Traditional wood-based panels are usually made from large-diameter trees and rely on adhesives for compactness, which negatively impacts the environment and human health. However, the widely distributed small-diameter shrubs are good raw materials for wood-based panels with abundant fibers, but are often under-exploited. This research reports the preparation of self-bonding biocomposites from Buxus sinica by an innovative combined approach of extraction, alkali treatment, and hot molding. The resulted biocomposites show better mechanical properties in which the flexural modulus (7.79 GPa) and the tensile modulus (4.33 GPa) were 5 times and 1.7 times higher than the conventional fiberboard, respectively, and also demonstrated better hydrophobicity than fiberboard, which could be due to the layer of lignin that formed on its surface preventing the infiltration of water. To sum up, the biocomposites prepared from small-diameter shrubs meet the requirement of the furniture and architectural decoration materials, suggesting that the proposed approach can be used to produce high-performance biocomposites.


Subject(s)
Buxus , Lignin , Humans , Interior Design and Furnishings , Research Report , Alkalies , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...