Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 894: 164916, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37343871

ABSTRACT

Research indicates that urban ecosystems can store large amounts of carbon. However, few studies have examined how the spatial features of park greenspace affect its carbon-carrying capacity, and how those effects vary with the spatial scale. Lidar point clouds and remote sensing images were extracted for the 196 ha green space in the China Green Expo to study carbon storage and sequestration in parks. Full subset regression, stepwise regression, HP analysis, and structural equation modeling were used to examine the scale dependency and the driving relationship between carbon storage and carbon sequestration in parks. The results show that the optimal statistical sample diameters for carbon density and carbon sequestration density in parks are 100 m. Under the influence of impermeable surfaces and water bodies, the statistical values of carbon density were minimized when the sample plot diameter was 700 m. Biodiversity and forest structure are the main drivers of carbon density, with the influence of water bodies being more prominent on a larger scale. Texture characteristics explain more carbon density than the vegetation index, and RVI could better explain the variation of carbon sequestration than NDVI. This study explores scaled changes in carbon density, carbon sequestration density in parks, and their driving relationships, which can aid in developing carbon sequestration strategies based on parks.

2.
Article in English | MEDLINE | ID: mdl-36833848

ABSTRACT

Urban parks can mitigate the urban heat island (UHI) and effectively improve the urban microclimate. In addition, quantifying the park land surface temperature (LST) and its relationship with park characteristics is crucial for guiding park design in practical urban planning. The study's primary purpose is to investigate the relationship between LST and landscape features in different park categories based on high-resolution data. In this study, we identified the land cover types of 123 parks in Luoyang using WorldView-2 data and selected 26 landscape pattern indicators to quantify the park landscape characteristics. The result shows that the parks can alleviate UHI in most seasons, but some can increase it in winter. While the percentage of bare land, PD, and PAFRAC have a positive impact on LST, AREA_MN has a significant negative impact. However, to deal with the current urban warming trend, a compact, clustered landscape configuration is required. This study provides an understanding of the major factors affecting the mitigation of thermal effects in urban parks (UP) and establishes a practical and feasible urban park renewal method under the idea of climate adaptive design, which provides valuable inspiration for urban park planning and design.


Subject(s)
Hot Temperature , Parks, Recreational , Cities , Environmental Monitoring/methods , China , Forests
3.
J Hazard Mater ; 435: 129019, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35523093

ABSTRACT

Environmental factors, including antibiotics such as tetracycline, can alter biological processes in plants. To ascertain how cell/tissue response to tetracycline, a multi-omic analysis was implemented to explore the molecular mechanism of tetracycline influencing the growth of ryegrass root. Tetracycline induced extensive changes in the root metabolome in plants, particularly impacting metabolites of flavonoid metabolic pathways, which were supported through consistent differences between transcriptome and proteome. Cross-comparison between mRNA and protein contents considered the authentication of congruence with related metabolites and revealed changes of several biological processes under tetracycline stress. Overall, we present an undemanding multi-omic strategy to survey the significant influence on the root under tetracycline stress.


Subject(s)
Biological Phenomena , Lolium , Anti-Bacterial Agents/toxicity , Metabolome , Tetracycline/toxicity , Transcriptome
4.
Article in English | MEDLINE | ID: mdl-36613014

ABSTRACT

Air pollution poses serious challenges for human health and wellbeing. It also affects atmospheric visibility and contributes to climate change. As social and economic processes have increased, anthropogenic PM2.5 pollution caused by intensive human activities has led to extremely severe air pollution. Spatiotemporal patterns and drivers of anthropogenic PM2.5 concentrations have received increasing attention from the scientific community. Nonetheless, spatiotemporal patterns and drivers of anthropogenic PM2.5 concentrations are still inadequately understood. Based on a time series of remotely sensed anthropogenic PM2.5 concentrations, this study analyzed the spatiotemporal patterns of this crucial pollutant in China from 1998 to 2016 using Sen's slope estimator and the Mann-Kendall trend model. This, in combination with grey correlation analysis (GCA), was used to reveal the socioeconomic factors influencing anthropogenic PM2.5 concentrations in eastern, central, and western China from 1998 to 2016. The results were as follows: (1) the average annual anthropogenic concentration of PM2.5 in China increased quickly and reached its peak value in 2007, then remained stable in the following years; (2) only 63.30 to 55.09% of the land area reached the threshold value of 15 µg/m3 from 1998 to 2016; (3) regarding the polarization phenomenon of anthropogenic PM2.5 concentrations existing in eastern and central China, the proportion of gradient 1 (≤15 µg/m3) gradually decreased and gradient 3 (≥35 µg/m3) gradually increased; and (4) the urbanization level (UR), population density (PD), and proportion of secondary industry to gross domestic product (SI) were the dominant socioeconomic factors affecting the formation of anthropogenic PM2.5 concentrations in eastern, central, and western China, independently. The improvements in energy consumption per gross domestic product (EI) have a greater potential for mitigating anthropogenic PM2.5 emissions in central and western China. These findings allow an interpretation of the spatial distribution of anthropogenic PM2.5 concentrations and the mechanisms influencing anthropogenic PM2.5 concentrations, which can help the Chinese government develop effective abatement strategies.


Subject(s)
Air Pollutants , Air Pollution , Humans , Air Pollutants/analysis , Particulate Matter/analysis , Environmental Monitoring/methods , Air Pollution/analysis , China
5.
Ecotoxicol Environ Saf ; 226: 112817, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34563888

ABSTRACT

Changes in the types and contents of metabolites in plants can occur in response to environmental stress. In this study, pumpkin seeds were cultivated in a cadmium ion solution (cadmium sulfate) for 7 days, and growth parameters, antioxidant enzyme activities, and metabolites in the root, stem, and leaf were analyzed. The results showed that cadmium accumulation characteristics were in the order of root > stem > leaf. Cadmium restrained root growth and promoted superoxide dismutase, peroxidase, catalase activities in the root, but inhibited their activities in the leaf. Cadmium did not change the total biomass of pumpkin seedlings. Orthogonal partial least squares (OPLS) analyses were conducted to detect the relationships between fresh weight and metabolites. These analyses revealed that maltose had significantly positive relationships with the fresh weight of the root, stem, and leaf. Cadmium influenced glyoxylate and dicarboxylate metabolism, aminoacyl-tRNA biosynthesis, sulfur metabolism, butanoate metabolism, alanine, aspartate and glutamate metabolism, glutathione metabolism, glycine, serine and threonine metabolism in the root; glycolysis/gluconeogenesis in the stem; and biosynthesis of unsaturated fatty acids, galactose metabolism, cutin, suberine and wax biosynthesis in the leaf. It is important that cadmium inhibited root growth by inhibiting carbohydrate transport from the leaf to the root and promoted leaf growth by the accumulation of carbohydrates in the leaf. Furthermore, cadmium also restrained amino acid metabolism in the root of pumpkin seedlings. These results provide new information about how pumpkin seedlings respond to cadmium stress.


Subject(s)
Cucurbita , Seedlings , Antioxidants , Cadmium/toxicity , Plant Roots , Superoxide Dismutase
6.
J Hazard Mater ; 380: 120885, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31377673

ABSTRACT

Tetracycline is an antibiotic that frequently contaminates the environment. In this study, the growth and metabolites of ryegrass seedlings treated with tetracycline (0, 1, 10 or 100 mg/L) for 5 days were investigated. The results showed that the growth of ryegrass and the concentrations of carotenoid and chlorophyll decreased as the tetracycline concentration increased. Tetracycline increased the production of reactive oxygen species (ROS) and cell permeability and triggered mitochondrial membrane potential loss in the roots of ryegrass. The metabolic profiles of ryegrass differed between the control and tetracycline-treated groups. The contents of glucose, shikimic acid, aconitic acid, serine, lactose, phenylalanine, mannitol, galactose, gluconic acid, asparagine, and glucopyranose were positively correlated with root length and had high variable importance projection values. These compounds may have crucial functions in root extension. Tetracycline also affected aminoacyl-tRNA biosynthesis, nitrogen metabolism, and alanine, aspartate and glutamate metabolism in the roots. Tetracycline may affect root extension by regulating the synthesis/degradation of these metabolites or the activity of their biosynthetic pathways. These results provide an insight into the stress response of ryegrass to tetracycline.


Subject(s)
Lolium/drug effects , Oxidative Stress , Tetracycline/pharmacology , Antioxidants/metabolism , Cell Membrane Permeability/drug effects , Lolium/growth & development , Lolium/metabolism , Malondialdehyde/metabolism , Membrane Potential, Mitochondrial/drug effects , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Reactive Oxygen Species/metabolism
7.
Environ Sci Technol ; 53(8): 4206-4214, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30864783

ABSTRACT

Soil erosion, which has been recently shown to significantly perturb carbon cycling, occurs naturally but can be either enhanced or reduced by human activities. However, the impacts of soil erosion on terrestrial contaminant cycles remain unclear. Here, we select eight trace elements, i.e., arsenic, cadmium, chromium, copper, nickel, lead, zinc, and mercury, to examine the erosional impacts of the elements' fate and transport across China. By synthesizing the detailed distribution of soil erosion fluxes, soil element inventories, and diverse modeling methods, we reveal that while human activities have reduced the lateral transport of these elements in the Loess Plateau (Central North China, a 56% decline in the past two decades with a range of 46% to 110%) due to soil conservation projects, they have increased these transport fluxes in China's major karst regions (Southwest China, a 84% increase with a range of 55% to 150%) because of severe rocky desertification. These fluxes have completely overwhelmed the soil conservation efforts in the Loess Plateau. Fluxes of these elements into aquatic environments from Southwest China reached 46% of the total input in China in 2010. These fluxes were higher than the inputs from point sources in the region by a factor of 50 because of impacts of excessive agricultural cultivation and geographical and climatic factors. These findings indicate the enormous perturbation of terrestrial contaminant cycles caused by soil erosion in karst regions and demonstrate the need for long-term sustainable management of soil erosion and contaminant discharge to protect fragile terrestrial ecosystems.


Subject(s)
Soil , Trace Elements , China , Conservation of Natural Resources , Ecosystem
8.
Environ Sci Technol ; 52(15): 8838-8847, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30019578

ABSTRACT

Highly elevated concentrations of total mercury (THg) and methylmercury (MeHg) were found in the municipal sewage in Tibet. Material flow analysis supports the hypothesis that these elevated concentrations are related to regular ingestion of Hg-containing Traditional Tibetan Medicine (TTM). In Tibet in 2015, a total of 3600 kg of THg was released from human body into the terrestrial environment as a result of TTM ingestion, amounting to 45% of the total THg release into the terrestrial environment in Tibet, hence substantially enhancing the environmental Hg burden. Regular ingestion of TTM leads to chronic exposure of Tibetans to inorganic Hg (IHg) and MeHg, which is 34 to 3000-fold and 0-12-fold higher than from any other known dietary sources, respectively. Application of a human physiology model demonstrated that ingestion of TTM can induce high blood IHg and MeHg levels in the human body. Moreover, 180 days would be required for the MeHg to be cleared out of the human body and return to the initial concentration i.e. prior to the ingestion of 1 TTM pill. Our analysis suggests that high Hg level contained in TTM could be harmful to human health and elevate the environmental Hg burden in Tibet.


Subject(s)
Mercury , Methylmercury Compounds , China , Environmental Monitoring , Humans , Medicine, Tibetan Traditional , Tibet
9.
Environ Sci Technol ; 52(12): 6945-6956, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29785847

ABSTRACT

Terrestrial mercury (Hg) transport, induced by water erosion and exacerbated by human activities, constitutes a major disturbance of the natural Hg cycle, but the processes are still not well understood. In this study, we modeled these processes using detailed information on erosion and Hg in soils and found that vast quantities of total Hg (THg) are being removed from land surfaces in China as a result of water erosion, which were estimated at 420 Mg/yr around 2010. This was significantly higher than the 240 Mg/yr mobilized around 1990. The erosion mechanism excavated substantial soil THg, which contributed to enhanced Hg(0) emissions to the atmosphere (4.9 Mg/yr around 2010) and its transport horizontally into streams (310 Mg/yr). Erosion-induced THg transport was driven by the extent of precipitation but was further enhanced or reduced by vegetation cover and land use changes in some regions. Surface air temperature may exacerbate the horizontal THg release into water. Our analyses quantified the processes of erosion-induced THg transport in terrestrial ecosystems, demonstrated its importance, and discussed how this transport is impacted by anthropogenic inputs and legacy THg in soils. We suggest that policy makers should pay more attention to legacy anthropogenic THg sources buried in soil.


Subject(s)
Mercury , China , Ecosystem , Environmental Monitoring , Humans , Soil , Water
10.
Ecol Evol ; 5(12): 2478-86, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26120436

ABSTRACT

Understanding the plant-pest interaction under warming with grazing conditions is critical to predict the response of alpine meadow to future climate change. We investigated the effects of experimental warming and grazing on the interaction between plants and the grassland caterpillar Gynaephora menyuanensis in an alpine meadow on the Tibetan Plateau in 2010 and 2011. Our results showed that grazing significantly increased nitrogen concentration in graminoids and sward openness with a lower sward height, sward coverage, and plant litter mass in the community. Grazing significantly increased G. menyuanensis body size and potential fecundity in 2010. The increases in female body size were about twofold greater than in males. In addition, grazing significantly increased G. menyuanensis density and its negative effects on aboveground biomass and graminoid coverage in 2011. We found that G. menyuanensis body size was significantly positively correlated with nitrogen concentration in graminoids but negatively correlated with plant litter mass. Even though warming did not significantly increased G. menyuanensis performance and the negative effects of G. menyuanensis on alpine meadow, the increases in G. menyuanensis growth rate and its negative effect on aboveground biomass under the warming with grazing treatment were significantly higher than those under the no warming with grazing treatment. The positive effects of grazing on G. menyuanensis performance and its damage were exacerbated by the warming treatment. Our results suggest that the fitness of G. menyuanensis would increase under future warming with grazing conditions, thereby posing a greater risk to alpine meadow and livestock production.

SELECTION OF CITATIONS
SEARCH DETAIL
...