Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci (China) ; 87: 149-162, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31791488

ABSTRACT

A graphite carbon nitride (g-C3N4) modified Bi4O5I2 composite was successfully prepared in-situ via the thermal treatment of a g-C3N4/BiOI precursor at 400°C for 3 hr. The as-prepared g-C3N4/Bi4O5I2 showed high photocatalytic performance in Methyl Orange (MO) degradation under visible light. The best sample presented a degradation rate of 0.164 min-1, which is 3.2 and 82 times as high as that of Bi4O5I2 and g-C3N4, respectively. The g-C3N4/Bi4O5I2 was characterized by X-ray powder diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman, X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectra (DRS), electrochemical impedance spectroscopy (EIS) and transient photocurrent response in order to explain the enhanced photoactivity. Results indicated that the decoration with a small amount of g-C3N4 influenced the specific surface area only slightly. Nevertheless, the capability for absorbing visible light was improved measurably, which was beneficial to the MO degradation. On top of that, a strong interaction between g-C3N4 and Bi4O5I2 was detected. This interplay promoted the formation of a favorable heterojunction structure and thereby enhanced the charge separation. Thus, the g-C3N4/Bi4O5I2 composite presented greater charge separation efficiency and much better photocatalytic performance than Bi4O5I2. Additionally, g-C3N4/Bi4O5I2 also presented high stability. •O2- and holes were verified to be the main reactive species.


Subject(s)
Azo Compounds/chemistry , Photochemical Processes , Graphite/chemistry , Light , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nitrogen Compounds/chemistry , Photoelectron Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...