Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Immunology ; 172(1): 46-60, 2024 May.
Article in English | MEDLINE | ID: mdl-38247105

ABSTRACT

Chicken single-chain fragment variable (IgY-scFv) is a functional fragment and an emerging development in genetically engineered antibodies with a wide range of biomedical applications. However, scFvs have considerably shorter serum half-life due to the absence of antibody Fc region compared with the full-length antibody, and usually requires continuous intravenous administration for efficacy. A promising approach to overcome this limitation is to fuse scFv with immunoglobulin G (IgG) Fc region, for better recognition and mediation by the neonatal Fc receptor (FcRn) in the host. In this study, engineered mammalian ΔFc domains (CH2, CH3, and intact Fc region) were fused with anti-canine parvovirus-like particles avian IgY-scFv to produce chimeric antibodies and expressed in the HEK293 cell expression system. The obtained scFv-CH2, scFv-CH3, and scFv-Fc can bind with antigen specifically and dose-dependently. Surface plasmon resonance investigation confirmed that scFv-CH2, scFv-CH3, and scFv-Fc had different degrees of binding to FcRn, with scFv-Fc showing the highest affinity. scFv-Fc had a significantly longer half-life in mice compared with the unfused scFv. The identified ΔFcs are promising for the development of engineered Fc-based therapeutic antibodies and proteins with longer half-lives. The avian IgY-scFv-mammalian IgG Fc region opens up new avenues for antibody engineering, and it is a novel strategy to enhance the rapid development and screening of functional antibodies in veterinary and human medicine.


Subject(s)
Chimerism , Immunoglobulin G , Immunoglobulins , Humans , Mice , Animals , HEK293 Cells , Immunoglobulin Fc Fragments/genetics , Mammals/metabolism
2.
Phys Chem Chem Phys ; 25(15): 10935-10945, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37016831

ABSTRACT

This paper describes a tin oxide and copper doped tin oxide gas sensing material synthesized by a biological template method and simple hydrothermal reaction, which were used for the preparation of a gas sensor array. The sensor array is combined with the Sparrow Search Algorithm optimized BP neural network algorithm (SSA-BP) to predict and analyze the concentration of indoor toxic gases, including ammonia, xylene, and formaldehyde. Granular SnO2 was prepared by the biological template method and Cu/SnO2 doped with different copper ion concentrations was prepared by the hydrothermal method. The morphology of the synthesized nanomaterials was characterized by SEM, and the elemental composition and chemical state of the main elements were analyzed by XRD and XPS. The PL emission observed in the visible region is attributed to the defect level gap caused by oxygen. The optimal operating temperature, sensitivity, response/recovery time and the long-term stability of the sensor array have been studied. By combining the sensor array with the neural network algorithm in a simulated indoor environment at four humidity levels, the concentration information of the gas mixtures could be well predicted and the predicted concentration error was less than 0.84 ppm. Therefore, the sensor array prepared in this study combined with the SSA-BP algorithm achieved good results in predicting the concentrations of the three toxic mixtures.

3.
AMB Express ; 12(1): 18, 2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35150368

ABSTRACT

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread globally, a series of vaccines, antibodies and drugs have been developed to combat coronavirus disease 2019 (COVID-19). High specific antibodies are powerful tool for the development of immunoassay and providing passive immunotherapy against SARS-CoV-2 and expected with large scale production. SARS-CoV-2 S1 protein was expressed in E. coli BL21 and purified by immobilized metal affinity chromatography, as antigen used to immunize hens, the specific IgY antibodies were extracted form egg yolk by PEG-6000 precipitation, and the titer of anti-S1 IgY antibody reached 1:10,000. IgY single chain variable fragment antibody (IgY-scFv) was generated by using phage display technology and the IgY-scFv showed high binding sensitivity and capacity to S1 protein of SARS-CoV-2, and the minimum detectable antigen S1 protein concentration was 6 ng/µL. The docking study showed that the multiple epitopes on the IgY-scFv interacted with multiple residues on SARS-CoV-2 S1 RBD to form hydrogen bonds. This preliminary study suggests that IgY and IgY-scFv are suitable candidates for the development of immunoassay and passive immunotherapy for COVID-19 to humans and animals.

4.
Vet Res ; 52(1): 70, 2021 May 13.
Article in English | MEDLINE | ID: mdl-33985573

ABSTRACT

Antibody mimetics may be used for various biomedical applications, especially those for which conventional antibodies are ineffective. In this study, we developed a smaller molecular chicken IgY mimetic peptide (IgY-peptide) based on the complementarity-determining regions (CDRs) of the anti-canine parvovirus (CPV) IgY-scFv prepared previously. The mimetic peptide showed no cross-reactivity with canine distemper virus (CDV) and canine coronavirus (CCV) and showed excellent protective properties for Crandell-Rees Feline Kidney (CRFK) cells against CPV. This study is the first attempt to develop a mimetic IgY-peptide and demonstrates the ease and feasibility in generating such a novel antibody-like functional molecule for biomedical purposes.


Subject(s)
Immunoglobulins/metabolism , Parvovirus, Canine/immunology , Single-Chain Antibodies/metabolism , Animals , Biomimetics , Cats , Cell Line , Chickens , Dogs , Feces/virology , Immunoglobulins/immunology , Pilot Projects
5.
Vet Res ; 51(1): 110, 2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32883344

ABSTRACT

Canine parvovirus (CPV) can cause acute and highly contagious bloody enteritis in dog. To obtain antibodies against CPV, hens were immunized with virus-like particles (VLP) of CPV-VP2. The IgY single chain fragment variables (scFv) were generated by T7 phage display system and expressed in E. coli system. The titer of the primary scFv library reached to 1.5 × 106 pfu/mL, and 95% of the phages contained the target fragments. The CPV-VLP and CPV-VP2 protein showed similar reaction values to the purified scFv in the ELISA test, and the results of ELISA analysis using IgY-scFv toward CPV clinical samples were consistent with commercial immunochromatographic assay (ICA) and PCR detection, the scFv did not show cross reactivity with canine distemper virus (CDV) and canine coronavirus (CCV). IgY-scFv was successfully expressed in CRFK cells, and in the virus suppression assay, 55% of CPV infections were eliminated within 24 h. Docking results demonstrated that the number of amino acids of the binding sides between scFv and VP2 were AA37 and AA40, respectively. This study revealed the feasibility of a novel functional antibody fragment development strategy by generating diversified avian IgY-scFv libraries towards the pathogenic target of interest for both detection and therapeutic purposes in veterinary medicine.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Capsid Proteins/immunology , Dog Diseases/virology , Immunoglobulins/immunology , Parvoviridae Infections/veterinary , Parvovirus, Canine/immunology , Single-Chain Antibodies/immunology , Animals , Chickens/immunology , Dog Diseases/diagnosis , Dog Diseases/immunology , Dogs , Enzyme-Linked Immunosorbent Assay/veterinary , Female , Molecular Docking Simulation , Parvoviridae Infections/diagnosis , Parvoviridae Infections/immunology , Parvoviridae Infections/virology , Single-Chain Antibodies/genetics
6.
Prep Biochem Biotechnol ; 50(8): 788-793, 2020.
Article in English | MEDLINE | ID: mdl-32163005

ABSTRACT

In order to evaluate the possibility of using IgY as the secondary antibody in immunoassay, specific IgY (1: 128,000) was generated by immunizing hens with mouse serum IgG purified by protein A column. IgY was extracted from egg yolk by polyethylene glycol 6000 (PEG-6000), and further purified using protein M affinity chromatography column. The purified IgY was conjugated with horseradish peroxidase (HRP) and fluorescein isothiocyanate (FITC), in that order. The reactivity of conjugated antibodies was evaluated by ELISA, Western blot and Immunofluorescence, demonstrating that the obtained IgY was able to conjugate with enzymes, react with mouse primary IgG antibody, and subsequently amplify the antigen-antibody signals in different immune reaction conditions, in a comparable secondary effect to conventional goat anti-mouse IgG antibody. The obtained conjugated antibodies showed high stability in broad pH ranges (4-10; >70%) and high thermostability at 37 °C for 84 h (>85%). Despite the need to further consider and evaluate the industrial standardization and production process, our data provided the primary evidence that conjugated IgY antibodies can be used as a secondary antibody for broad immunological analysis.


Subject(s)
Chickens/immunology , Immunoglobulin G/immunology , Immunoglobulins/immunology , Mice/immunology , Animals , Chromatography, Affinity , Enzyme-Linked Immunosorbent Assay , Female , Immunization , Immunoconjugates/immunology , Mice, Inbred BALB C
7.
Acta Vet Hung ; 65(3): 402-416, 2017 09.
Article in English | MEDLINE | ID: mdl-28956480

ABSTRACT

The NOD-like receptor protein 3 (NLRP3) inflammasome comprised of NLRP3, ASC and caspase-1 plays an important role in the inflammatory and innate immune response. However, little is known about the expression pattern and histological distribution of these genes in goat. Here, we first cloned the fulllength cDNAs of the NLRP3, ASC and caspase-1 genes of Hainan black goat and produced their polyclonal antibodies. Tissue-specific expression and histological distribution of these genes were analysed. Phylogenetic analysis revealed that these three goat genes had high homology with Bos taurus genes and low homology with avian or fish genes. After immunisations with these recombinant Histagged proteins, the titres of antiserum were higher than 1:1024 and purified IgG was obtained. These three genes were expressed in all examined tissues, the mRNA expression level of NLRP3 and caspase-1 was most abundant in the spleen and mesenteric lymph nodes (MLNs), while ASC was primary expressed in the liver, spleen and kidney. The histological distribution of NLRP3, ASC and caspase-1 was detected in myocardial cells, hepatocytes, focal lymphocytes, bronchiolar epithelial cells, renal tubular epithelial cells, cortical neurons and endothelial cells of the germinal centres in the MLNs. These results will be helpful in further investigations into the function of the NLRP3 inflammasome and in elucidating its role in caprine inflammatory diseases.


Subject(s)
Goats/metabolism , Inflammasomes/metabolism , Inflammation/veterinary , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Transcriptome , Animals , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , Caspase 1/genetics , Caspase 1/metabolism , Gene Expression Regulation , Goats/genetics , Immunoglobulin G , Inflammation/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tissue Distribution
8.
Med Microbiol Immunol ; 205(5): 501-9, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27401907

ABSTRACT

H7N9 influenza A virus (IAV)-infected human cases are increasing and reported over 200 mortalities since its first emergence in 2013. Host inflammatory response contributes to the clearance of influenza virus; meanwhile, the induced "cytokine storm" also leads to pathological lesions. However, what inflammation-related response of the host for H7N9 influenza A virus infection to survival from injures of exuberant cytokine release is still obscure. In this research, expression pattern and histological distribution of inflammation-related genes, RIP3, NLRP3, IL-1ß, TNF-α, Slit2 and Robo4 in the lung of BALB/c mice infected with two H7N9 IAV strains with only a PB2 residue 627 difference were investigated, as well as the histopathological injury of the lung. Results showed that significantly higher expression level of NLRP3, RIP3, IL-1ß and TNF-α in H7N9-infected groups compared with the control would play a key role in driving lung pathological lesion. While the expression level of Slit2 and Robo4 in H7N9 rVK627E group had significantly increased trend than VK627 which might be the main factor to inhibit the interstitial pneumonia and infiltration. Also, H7N9 induced the histopathological changes in the lung of infected mice, and RIP3, NLRP3, IL-1ß, TNF-α, Slit2 and Robo4 showed cell-specific distribution in the lung. The results will provide basic data for further research on the mechanism of inflammatory response and understanding of the role of site 627 in PB2 in H7N9 IAVs infection. In addition, enhancing the resilience of the host vascular system to the inflammatory response by regulation of Slit2-Robo4 signaling pathway might provide a novel strategy for H7N9 IAVs infection.


Subject(s)
Gene Expression Profiling , Inflammation/pathology , Influenza A Virus, H7N9 Subtype/pathogenicity , Lung/pathology , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Animals , Female , Histocytochemistry , Immunohistochemistry , Mice, Inbred BALB C
9.
Biochem Genet ; 54(4): 360-367, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26969469

ABSTRACT

RIP3, a member of receptor-interacting protein family, is serine/threonine kinase that contributes to necrosis and promotes systematic inflammation. However, detailed information of the expression pattern and tissue distribution in BALB/c mice, a commonly used laboratory animal model, is still unavailable. Here, we provided the basic data of expression profile and histologic distribution of RIP3 in tissues of BALB/c mice. Rip3 mRNA expression levels and tissue distribution were detected by real-time quantitative PCR and immunohistochemical detection, respectively. Rip3 mRNA expression showed the highest level in the spleen and duodenum, while with the lowest level in brain. Immunohistochemical detection revealed this protein located in different type cells in different tissues. What's more, the obvious positive staining in nuclear was detected in liver cells and neurons in cerebral cortex of the brain, while cells in other organs, including heart, spleen, lung, kidney, stomach, duodenum and trachea, showed strong positive mainly in cytoplasm. The results will help us to further understand the site-specific functions of RIP3 in necrosis and inflammatory responses.


Subject(s)
Brain/metabolism , Duodenum/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Spleen/metabolism , Animals , Cell Nucleus/metabolism , Cytoplasm/metabolism , Male , Mice , Mice, Inbred BALB C , Tissue Distribution , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...