Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Ecotoxicol Environ Saf ; 231: 113203, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35051761

ABSTRACT

BACKGROUND: New alternative phthalates have been increasingly substituted for certain phthalates in some consumer products due to safety concerns. However, research on the steroidal effect of exposure to the newer replacement phthalates in the general adult population is lacking. OBJECTIVES: This study aimed to examine the associations of exposure to the older generation and newer replacement phthalates with sex hormone levels in the U.S. general population. METHODS: The current cross-sectional study was based on the National Health and Nutrition Examination Survey (NHANES) 2015-2016. Sixteen urinary phthalates metabolites and three serum sex hormones were measured in 1768 adults. Gender-specific associations between urinary phthalate concentrations and sex hormones were estimated by using adjusted multiple linear regression. Logistic regression was performed to calculate the risk of phthalates exposure on hormones dysfunction. RESULTS: Most phthalates metabolites concentrations were lower than 50 ng/mL. MEP, MBP, MiBP, MECPP, MCOP, MEHHP, MEOHP were higher than others, suggesting that new alternative DEP, DBP, and DiNP were exposed at high levels in daily life while DINCH was at a low level. Phthalates exposure was associated with decreased testosterone levels and increased estradiol and SHBG in total samples. Testosterone level was negatively associated with MnBP (ß: -0.05, 95% CI: -0.09, 0), MEOHP (ß:-0.05, 95% CI:-0.09,-0.01), MEHHP (ß:-0.04, 95% CI:-0.08,0), MECPP (ß:-0.07, 95% CI:-0.11,-0.03), MEP (ß: -0.03, 95% CI: -0.06, 0), MiBP (ß: -0.05, 95% CI: -0.10, -0.01) in males; ln-transformed estradiol were increased by 0.18 pg/mL (95% CI: 0.05,0.31), 0.15 pg/mL (95% CI: 0.01,0.29) with each 1 ln-concentration increase in MEHP and MNP, respectively, in females. CONCLUSIONS: Our results suggest that phthalates exposure may disturb the hormone homeostasis in adults. The safe alternative should be used with caution in industrial production in the future and the need for further research into the safety of the new alternative replacements is necessary.


Subject(s)
Environmental Pollutants , Phthalic Acids , Adult , Cross-Sectional Studies , Environmental Exposure/statistics & numerical data , Environmental Pollutants/toxicity , Female , Gonadal Steroid Hormones , Humans , Male , Nutrition Surveys , Phthalic Acids/toxicity
2.
Curr Med Sci ; 41(2): 199-210, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33877536

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) in indoor dust are one of the common exposure sources for children worldwide. The aim of this study is to explore PAHs pollution status in indoor dust and estimate health risk on Chinese children with big data. Weighted average concentration was used to analyze source and characterization of PAHs in indoor dust based on peer-reviewed literature. According to specific inclusion criteria, 17 studies were included finally to analyze weighted average concentration. The national average concentration of Σ16PAHs was approximately 25.696 µg/g. The highest concentration of Σ16PAHs was in Shanxi (2111.667 µg/g), and the lowest was in Hong Kong (1.505 µg/g). The concentrations in Shanxi and Guangdong were higher than national level and the over standard rate was 18.18%. The concentrations of individual PAHs varied greatly across the country, and Flu in Shanxi was the highest (189.400 µg/g). The sources of PAHs varied in different regions and combustion processes played a leading role. PAHs exposure through ingestion and dermal contact was more carcinogenic than inhalation. The incremental lifetime cancer risk model indicated that children lived in Shanxi were found in the highest health risk coupled with the highest BaPE concentration (54.074 µg/g). Although PAHs concentrations of indoor dust showed a downward trend from 2005 to 2018, indoor environmental sanitation should be improved with multidisciplinary efforts. Health standard should be possibly established to minimize children exposure to PAHs in indoor dust in China.


Subject(s)
Air Pollution, Indoor/analysis , Asian People , Dust/analysis , Health , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment , Carcinogenesis/pathology , China , Geography , Humans , Risk Factors , Time Factors
3.
Zhonghua Yu Fang Yi Xue Za Zhi ; 46(11): 1025-9, 2012 Nov.
Article in Chinese | MEDLINE | ID: mdl-23363925

ABSTRACT

OBJECTIVE: To project the future impacts of climate change on heat-related mortality in shanghai. METHODS: The statistical downscaling techniques were applied to simulate the daily mean temperatures of Shanghai in the middle and farther future under the changing climate. Based on the published exposure-reaction relationship of temperature and mortality in Shanghai, we projected the heat-related mortality in the middle and farther future under the circumstance of high speed increase of carbon e mission (A2) and low speed increase of carbon emission (B2). The data of 1961 to 1990 was used to establish the model, and the data of 1991 - 2001 was used to testify the model, and then the daily mean temperature from 2030 to 2059 and from 2070 to 2099 were simulated and the heat-related mortality was projected. The data resources were from U.S. National Climatic Data Center (NCDC), U.S. National Centers for Environmental Prediction Reanalysis Data in SDSM Website and UK Hadley Centre Coupled Model Data in SDSM Website. RESULTS: The explained variance and the standard error of the established model was separately 98.1% and 1.24°C. The R(2) value of the simulated trend line equaled to 0.978 in Shanghai, as testified by the model. Therefore, the temperature prediction model simulated daily mean temperatures well. Under A2 scenario, the daily mean temperature in 2030 - 2059 and 2070 - 2099 were projected to be 17.9°C and 20.4°C, respectively, increasing by 1.1°C and 3.6°C when compared to baseline period (16.8°C). Under B2 scenario, the daily mean temperature in 2030 - 2059 and 2070 - 2099 were projected to be 17.8°C and 19.1°C, respectively, increasing by 1.0°C and 2.3°C when compared to baseline period (16.8°C). Under A2 scenario, annual average heat-related mortality were projected to be 516 cases and 1191 cases in 2030 - 2059 and 2070 - 2099, respectively, increasing 53.6% and 254.5% when compared with baseline period (336 cases). Under B2 scenario, annual average heat-related mortality were projected to be 498 cases and 832 cases in 2030 - 2059 and 2070 - 2099, respectively, increasing 48.2% and 147.6% when compared with baseline period (336 cases). CONCLUSION: Under the changing climate, heat-related mortality is projected to increase in the future;and the increase will be more obvious in year 2070 - 2099 than in year 2030 - 2059.


Subject(s)
Greenhouse Effect , Mortality , China , Climate Change , Humans , Models, Theoretical , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...