Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 659: 397-412, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38183806

ABSTRACT

BACKGROUND: Clinical treatments ofgastric infections using antibiotics suffer from the undesired killing of commensal bacteria and emergence of antibiotic resistance. It is desirable to develop pH-responsive antimicrobial peptides (AMPs) that kill pathogenic bacteria such as H. pyloriand resistant E. coli under acidic environment with minimal impact to commensal bacteria whilst not causing antibiotic resistance. EXPERIMENTS: Using a combined approach of cell assays, molecular dynamics (MD) simulations and membrane models facilitating biophysical and biochemical measurements including small angle neutron scattering (SANS), we have characterized the pH-responsive physiochemical properties and antimicrobial performance of two amphiphilic AMPs, GIIKDIIKDIIKDI-NH2 and GIIKKIIDDIIKKI-NH2 (denoted as 3D and 2D, respectively), that were designed by selective substitutions of cationic residues of Lys (K) in the extensively studied AMP G(IIKK)3I-NH2 with anionic residue Asp (D). FINDINGS: Whilst 2D kept non-ordered coils across the entire pH range studied, 3D displayed a range of secondary structures when pH was shifted from basic to acidic, with distinct self-assembly into nanofibers in aqueous environment. Further experimental and modeling studies revealed that the AMPs interacted differently with the inner and outer membranes of Gram-negative bacteria in a pH-responsive manner and that the structural features characterized by membrane leakage and intramembrane nanoaggregates revealed from fluorescence spectroscopy and SANS were well linked to antimicrobial actions. Different antimicrobial efficacies of 2D and 3D were underlined by the interplay between their ability to bind to the outer membrane lipid LPS (lipopolysaccharide), outer membrane permeability change and inner membrane depolarization and leakage. Furthermore, AMP's binding with the inner membrane under acidic condition caused both the dissipation of membrane potential (Δψ) and the continuous dissipation of transmembrane ΔpH, with Δψ and ΔpH being the key components of the proton motive force. Combinations of antibiotic (Minocycline) with the pH-responsive AMP generated the synergistic effects against Gram-negative bacteria only under acidic condition. These features are crucial to target applications to gastric infections, anti-acne and wound healing.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Escherichia coli , Gram-Negative Bacteria , Anti-Infective Agents/pharmacology , Lipopolysaccharides/chemistry , Bacteria/metabolism , Hydrogen-Ion Concentration , Microbial Sensitivity Tests
2.
J Colloid Interface Sci ; 628(Pt B): 162-173, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36193615

ABSTRACT

HYPOTHESIS: Nonionic surfactants are widely used as co-formulants in agrochemical sprays. During spraying, they may come into direct contact with humans and animals, causing irritation in different tissues. However, how the molecular structures of these surfactants affect their toxicity towards human eye and skin at the cellular level has not been well characterised. EXPERIMENT: In this study, the cytotoxicities of two sets of nonionic surfactants (alkyl ethoxylate, CnEm) against human corneal and skin cell lines were examined, with one set composed of varied surfactant head length but fixed tail length (C12E4-23) and the other set oppositely composed (C10-16E6). The cell viability and morphology against different nonionic surfactants for varied exposure times were studied, followed by characterisation of their membrane-lytic ability. FINDING: Nonionic surfactants with intermediate amphiphilicity killed cells rapidly due to their strong membrane-lytic power. Those with weak or strong hydrophobicity exhibited low cytotoxicity but had different modes of action depending on their hydrophobicity. Hydrophobic surfactants were found to adsorb on to cell membranes with no observed structural damage for 2 hr. Hydrophilic surfactants were also found to adsorb on to cell membranes but did cause mild structural changes. While the changes were not sufficient to elicit large cytoplasmic leakage over short periods of time, membrane associations did cause cell shrinkage which eventually resulted in cell death over longer exposure periods. These results revealed that the specific amphiphilic nature of nonionic surfactants played a crucial role in determining their cytotoxicity. This work provided a useful basis for the assessment of amphiphilicity of the nonionic surfactants used in agrochemical sprays by balancing their efficiency, toxicity and environmental impact.


Subject(s)
Cornea , Surface-Active Agents , Animals , Humans , Surface-Active Agents/toxicity , Surface-Active Agents/chemistry , Skin , Hydrophobic and Hydrophilic Interactions , Agrochemicals
3.
J Colloid Interface Sci ; 567: 113-125, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32044540

ABSTRACT

Zinc rich epoxy (ZRE) coatings can provide sacrificial anode protection for metal substrate. Electrically conductive fillers can be added into ZRE coatings to create electroconductive network and improve the utilization of zinc particles. Inspired by the structure of reinforced concrete, in this work, carbon fibers with a length of 2 mm, 5 mm, and 10 mm were used as electrically conductive fillers to drive more zinc particle into electrically conductive paths and to provide coatings with better mechanical properties. Without agglomeration, ZRE-10 can achieve an efficient protection for copper substrate up to 50 days in 3.5 wt% NaCl solution, much longer than that of ZRE coating. Moreover, the fraction of water absorbed by ZRE-10 is 14%, which for ZRE is 20%, and the adhesion strength of ZRE-10 increased by 65% compared with that of ZRE. All tests in this work can prove a remarkably enhanced anticorrosion performance and mechanical properties of ZRE coatings achieved by addition of longer carbon fibers.

SELECTION OF CITATIONS
SEARCH DETAIL
...