Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
Add more filters










Publication year range
1.
Anal Sci Adv ; 5(1-2): 2300054, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38828084

ABSTRACT

RATIONALE: Soil microbial heterotrophic C-CO2 respiration is important for C cycling. Soil CO2 differentiation and quantification are vital for understanding soil C cycling and CO2 emission mitigation. Presently, soil microbial respiration (SR) quantification models are based on native soil organic matter (SOM) and require consistent monitoring of δ13C and CO2. METHODS: We present a new apparatus for achieving in situ soil static chamber incubation and simultaneous CO2 and δ13C monitoring by cavity ring-down spectroscopy (CRDS) coupled with a soil culture and gas introduction module (SCGIM) with multi-channel. After a meticulous five-point inter-calibration, the repeatability of CO2 and δ13C values by using CRDS-SCGIM were determined, and compared with those obtained using gas chromatography (GC) and isotope ratio mass spectrometry (IRMS), respectively. We examined the method regarding quantifying SR with various concentrations and enrichment of glucose and then applied it to investigate the responses of SR to the addition of different exogenous organic materials (glucose and rice residues) into paddy soils during a 21-day incubation. RESULTS: The CRDS-SCGIM CO2 and δ13C measurements were conducted with high precision (< 1.0 µmol/mol and 1‰, respectively). The optimal sampling interval and the amount added were not exceeded 4 h and 200 mg C/100 g dry soil in a 1 L incubation bottle, respectively; the 13C-enrichment of 3%-7% was appropriate. The total SR rates observed were 0.6-4.2 µL/h/g and the exogenous organic materials induced -49%-28% of priming effects in native SOM mineralisation. CONCLUSIONS: Our results show that CRDS-SCGIM is a method suitable for the quantification of soil microbial CO2 respiration, requiring less extensive lab resources than GC/IRMS.

2.
Sci Total Environ ; 939: 173606, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38823704

ABSTRACT

Organic soil amendments have been widely adopted to enhance soil organic carbon (SOC) stocks in agroforestry ecosystems. However, the contrasting impacts of pyrogenic and fresh organic matter on native SOC mineralization and the underlying mechanisms mediating those processes remain poorly understood. Here, an 80-day experiment was conducted to compare the effects of maize straw and its derived biochar on native SOC mineralization within a Moso bamboo (Phyllostachys edulis) forest soil. The quantity and quality of SOC, the expression of microbial functional genes concerning soil C cycling, and the activity of associated enzymes were determined. Maize straw enhanced while its biochar decreased the emissions of native SOC-derived CO2. The addition of maize straw (cf. control) enhanced the O-alkyl C proportion, activities of ß-glucosidase (BG), cellobiohydrolase (CBH) and dehydrogenase (DH), and abundances of GH48 and cbhI genes, while lowered aromatic C proportion, RubisCO enzyme activity, and cbbL abundance; the application of biochar induced the opposite effects. In all treatments, the cumulative native SOC-derived CO2 efflux increased with enhanced O-alkyl C proportion, activities of BG, CBH, and DH, and abundances of GH48 and cbhI genes, and with decreases in aromatic C, RubisCO enzyme activity and cbbL gene abundance. The enhanced emissions of native SOC-derived CO2 by the maize straw were associated with a higher O-alkyl C proportion, activities of BG and CBH, and abundance of GH48 and cbhI genes, as well as a lower aromatic C proportion and cbbL gene abundance, while biochar induced the opposite effects. We concluded that maize straw induced positive priming, while its biochar induced negative priming within a subtropical forest soil, due to the contrasting microbial responses resulted from changes in SOC speciation and compositions. Our findings highlight that biochar application is an effective approach for enhancing soil C stocks in subtropical forests.


Subject(s)
Carbon , Charcoal , Forests , Soil , Zea mays , Charcoal/chemistry , Soil/chemistry , Soil Microbiology
3.
J Hazard Mater ; 466: 133540, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38241834

ABSTRACT

The effect of microplastics (MPs) on the allocation of rice photosynthetic carbon (C) in paddy systems and its utilization by soil microorganisms remain unclear. In this study, 13C-CO2 pulse labeling was used to quantify the input and allocation of photosynthetic C in a rice-soil system under MPs amendment. Rice was pulse-labeled at tillering growth stage under 0.01% and 1% w/w polyethylene (PE) and polyvinyl chloride (PVC) MP amendments. Plants and soils were sampled 24 h after pulse labeling. Photosynthesized C in roots in MP treatments was 30-54% lower than that in no-MP treatments. The 13C in soil organic C (SOC) in PVC-MP-amended bulk soil was 4.3-4.7 times higher than that in no-MP treatments. PVC and high-dose PE increased the photosynthetic C in microbial biomass C in the rhizosphere soil. MPs altered the allocation of photosynthetic C to microbial phospholipid fatty acid (PLFA) groups. High-dose PVC increased the 13C gram-positive PLFAs. Low-dose PE and high-dose PVC enhanced 13C in fungal PLFAs in bulk soil (including arbuscular mycorrhizal fungi (AMF) and Zygomycota) by 175% and 197%, respectively. The results highlight that MPs alter plant C input and microbial utilization of rhizodeposits, thereby affecting the C cycle in paddy ecosystems.


Subject(s)
Oryza , Soil , Microplastics , Plastics , Ecosystem , Soil Microbiology , Carbon , Polyethylenes
4.
Sci Total Environ ; 916: 170081, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38220009

ABSTRACT

Biological nitrogen fixation (BNF) is strongly affected by the carbon (C) and nitrogen (N) stoichiometry in soil and depends on the input of organic C. Due to the high metabolic costs of nitrogenase activity, however, the response of BNF to organic C input and its impact on microbial turnover remain unclear. To address this knowledge gap, we combined 15N2 tracing with high-throughput sequencing by adding glucose or glucose plus mineral N fertilizer for a 12-day incubation in three cropland soils. Glucose addition alone strongly changed the BNF activity (0.76-2.51 mg N kg-1 d-1), while BNF was completely absent after mineral N fertilization. This switch-on of BNF by glucose addition supported equally high rates of microbial growth and organic C mineralization compared with the direct mineral N assimilation by microorganisms. Glucose-induced BNF was predominantly catalyzed by Azotobacter-affiliated free-living diazotrophs (>50 % of the total nifH genes), which increased with diverse nondiazotrophs such as Nitrososphaera, Bacillus and Pseudoxanthomonas. Structural equation models (SEMs) and random forest (RF) analyses consistently revealed that the soil C:N ratio and Azotobacter-affiliated diazotrophic abundances were the key factors affecting glucose-induced BNF. Our findings emphasize the importance of free-living diazotrophs for microbial turnover of organic C in soil.


Subject(s)
Nitrogen Fixation , Soil , Soil/chemistry , Nitrogen/analysis , Minerals , Glucose , Crops, Agricultural , Soil Microbiology
5.
J Environ Manage ; 351: 119862, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142599

ABSTRACT

Continuous nitrogen (N) loading alters plant growth and subsequently has the potential to impact soil organic carbon (SOC) accumulation in salt marshes. However, the knowledge gap of photosynthesized carbon (C) allocation in plant-soil-microbial systems hampers the quantification of C fluxes and the clarification of the mechanisms controlling the C budget under N loading in salt marsh ecosystems. To address this, we conducted an N fertilization field observation combined with a 5 h 13C-pulse labeling experiment in a salt marsh dominated by Suaeda. salsa (S. salsa) in the Yellow River Delta (YRD), China. N fertilization increased net 13C assimilation of S. Salsa by 277.97%, which was primarily allocated to aboveground biomass and SOC. However, N fertilization had little effect on 13C allocation to belowground biomass. Correlation analysis showed that 13C incorporation in soil was significantly and linearly correlated with 13C incorporation in shoots rather than in roots both in a 0 N (0 g N m-2 yr-1) and +N (20 g N m-2 yr-1) group. The results suggested that SOC increase under N fertilization was mainly due to an increased C assimilation rate and more efficient downward transfer of photosynthesized C. In addition, N fertilization strongly improved the 13C amounts in the chloroform-labile SOC component by 295.26%. However, the absolute increment of newly fix 13C mainly existed in the form of residual SOC, which had more tendency for burial in the soil. Thus, N fertilization enhanced SOC accumulation although C loss increased via belowground respiration. These results have important implications for predicting the carbon budget under further human-induced N loading.


Subject(s)
Carbon , Nitrogen , Humans , Carbon/metabolism , Nitrogen/analysis , Wetlands , Ecosystem , Soil , Fertilization
6.
Sci Total Environ ; 889: 164245, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37211099

ABSTRACT

Amino acids and peptides are important regulators of ecosystem functioning due to their potential role as direct nutrient sources for plants and soil microbes. However, the turnover and driving factors of these compounds in agricultural soils remain poorly understood. This study aimed to reveal the short-term fate of 14C-labeled alanine and tri-alanine derived C under flooding conditions of the top (0-20 cm) and sub-horizons (20-40 cm) of subtropical paddy soils taken from four long-term (31 years since treatment) nitrogen (N) fertilization regimes (i.e., without fertilization, NPK, NPK with straw return (NPKS) or with manure (NPKM)). Amino acid mineralization was strongly affected by the N fertilization regime and soil depth, while peptide mineralization was only distinct between soil layers. The average half-life of amino acid and peptide in the topsoil was 8 h across all treatments, which was higher than previously reported in uplands. The microbial turnover of amino acid and peptide was 7-10 times slower in the subsoil than in the topsoil, with a half-life of about 2-3 days. The half-life of amino acid and peptide for the respired pool was strongly associated with soil physicochemical characteristics, the total biomass, and the structure of soil microbial communities. The N fertilization regime and soil depth affected the substrate uptake rate by microorganisms, with greater uptake observed in the NPKS and NPKM treatments and the topsoil. Microbial amino acid uptake was correlated with the biomass of total and individual microbial groups, whereas microbial peptide uptake was associated with the soil microbial community structure and physicochemical characteristics. This suggests that there are various pathways of amino acid and peptide use by microorganisms under flooding conditions. We conclude that microbial mineralization of amino acid and its peptide in paddy soils under flooding conditions is slower than in upland soils, and that microbial uptake of these substrates is related to soil abiotic factors and the biomass and structure of soil microbial community. These findings have important implications for understanding nutrient cycling and ecosystem functioning in agricultural soils.


Subject(s)
Oryza , Soil , Soil/chemistry , Ecosystem , Amino Acids , Fertilizers/analysis , Soil Microbiology , Oryza/chemistry , Agriculture , Alanine , Nitrogen/analysis , Fertilization
7.
J Environ Manage ; 336: 117722, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36924706

ABSTRACT

Microbial volatile organic compounds (VOCs) can suppress plant pathogens. Although fertilization strongly affects soil microbial communities, the influence of fertilization on microbial VOC-mediated suppression of pathogens has not been elucidated. Soil was sampled from a paddy field that had been subjected to the following treatments for 30 years: a no-fertilizer control, mineral fertilization (NPK), NPK combined with rice straw (NPK + S), NPK combined with chicken manure (70% NPK + 30% M). Then, within a laboratory experiment, pathogens were exposed to VOCs without physical contact to assess the impact of VOCs emitted from paddy soils on in vitro growth of the fungal rice pathogens: Pyricularia oryzae and Rhizoctonia solani. The VOCs emitted from soil reduced the mycelial biomass of P. oryzae and R. solani by 36-51% and 10-30%, respectively, compared to that of the control (no soil; no VOCs emission). Overall, the highest suppression of P. oryzae and R. solani was in the NPK and NPK + S soils, which emitted more quinones, phenols, and low alcohols than NPK + M soils. The abundances of quinones and phenols in the soil air were maximal in the NPK-fertilized soil because the low ratio of dissolved organic carbon and Olsen-P increased the population of key species such as Acidobacteriae, Anaerolineae, and Entorrhizomycetes. The abundance of alcohols was minimum in the NPK + S fertilized soil because the high SOC content decreased the population of Sordariomycetes. In conclusion, mineral fertilization affects bacterial and fungal VOC emissions, thereby suppressing the growth of R. solani and P. oryzae.


Subject(s)
Oryza , Soil Microbiology , Soil , Bacteria , Biomass , Fertilizers/analysis , Manure , Agriculture
8.
Front Microbiol ; 14: 1120466, 2023.
Article in English | MEDLINE | ID: mdl-36846789

ABSTRACT

Numerous studies have investigated the effects of nitrogen (N) addition on soil organic carbon (SOC) decomposition. However, most studies have focused on the shallow top soils <0.2 m (surface soil), with a few studies also examining the deeper soil depths of 0.5-1.0 m (subsoil). Studies investigating the effects of N addition on SOC decomposition in soil >1.0 m deep (deep soil) are rare. Here, we investigated the effects and the underlying mechanisms of nitrate addition on SOC stability in soil depths deeper than 1.0 m. The results showed that nitrate addition promoted deep soil respiration if the stoichiometric mole ratio of nitrate to O2 exceeded the threshold of 6:1, at which nitrate can be used as an alternative acceptor to O2 for microbial respiration. In addition, the mole ratio of the produced CO2 to N2O was 2.57:1, which is close to the theoretical ratio of 2:1 expected when nitrate is used as an electron acceptor for microbial respiration. These results demonstrated that nitrate, as an alternative acceptor to O2, promoted microbial carbon decomposition in deep soil. Furthermore, our results showed that nitrate addition increased the abundance of SOC decomposers and the expressions of their functional genes, and concurrently decreased MAOC, and the ratio of MAOC/SOC decreased from 20% before incubation to 4% at the end of incubation. Thus, nitrate can destabilize the MAOC in deep soils by stimulating microbial utilization of MAOC. Our results imply a new mechanism on how above-ground anthropogenic N inputs affect MAOC stability in deep soil. Mitigation of nitrate leaching is expected to benefit the conservation of MAOC in deep soil depths.

9.
Sci Total Environ ; 857(Pt 2): 159181, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36191720

ABSTRACT

The intensive use of chemical fertilizer, particularly nitrogen (N) has resulted in not only markedly increased crop yields but also detrimental effects on ecosystems. Plant microbiomes represent an eco-friendly alternative for plant nutrition and productivity, and the effect of N fertilization on plant and soil microbes has been well studied. However, if and how N fertilization modulates seed endophytic microbiomes and grain quality remains largely unknown. Here, we investigated the effect of different N fertilization rates on rice seed endophytic bacterial and fungal communities as well as on grain quality. Higher bacterial and fungal community diversity and richness, but lower grain protein and amino acid contents were found in seeds of rice treated moderate N fertilization than those treated insufficient or excessive N input. There were also more complex co-occurrence networks, and an enrichment of putative beneficial bacterial taxa in seeds under moderate N application, while there was an opposite trend under the excessive N treatment. In addition, the grain amylose and amylopectin contents were positively correlated with the relative abundance of bacterial and fungal dominant genera, while the grain amino acid contents were negatively correlated with the bacterial dominant genera but positively associated with fungal dominant genera. Together, we demonstrate that moderate N fertilization can enhance bacterial and fungal community colonization in seeds and improve grain eating and cooking qualities. This study extends our knowledge regarding the significant role of rational fertilization on seed-microbe interactions in sustainable agriculture.


Subject(s)
Microbiota , Oryza , Oryza/chemistry , Nitrogen/analysis , Fertilizers/analysis , Edible Grain/chemistry , Seeds/chemistry , Bacteria/metabolism , Amino Acids/analysis , Fertilization
10.
Front Bioeng Biotechnol ; 10: 1033991, 2022.
Article in English | MEDLINE | ID: mdl-36324899

ABSTRACT

Rhizosphere-associated microbes have important implications for plant health, but knowledge of the association between the pathological conditions of soil-borne virus-infected wheat and soil microbial communities, especially changes in fungal communities, remains limited. We investigated the succession of fungal communities from bulk soil to wheat rhizosphere soil in both infected and healthy plants using amplicon sequencing methods, and assessed their potential role in plant health. The results showed that the diversity of fungi in wheat rhizosphere and bulk soils significantly differed post wheat yellow mosaic virus disease onset. The structure differences in fungal community at the two wheat health states or two compartment niches were evident, soil physicochemical properties (i.e., NH4 +) contribute to differences in fungal community structure and alpha diversity. Comparison analysis showed Mortierellomycetes and Dothideomycetes as dominant communities in healthy wheat soils at class level. The genus Pyronemataceae and Solicoccozyma were significantly are significantly enriched in rhizosphere soil of diseased plant, the genus Cystofilobasidium, Cladosporium, Mortierella, and Stephanonectria are significantly enriched in bulk soil of healthy plant. Co-occurrence network analysis showed that the fungi in healthy wheat soil has higher mutual benefit and connectivity compared with diseased wheat. The results of this study demonstrated that the occurrence of wheat yellow mosaic virus diseases altered both fungal community diversity and composition, and that NH4 + is the most important soil physicochemical factor influencing fungal diversity and community composition.

11.
Huan Jing Ke Xue ; 43(11): 5274-5285, 2022 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-36437099

ABSTRACT

Soil microbial communities play an important role in driving a variety of ecosystem functions and ecological processes and are the primary driving force in maintaining the biogeochemical cycle. It has been observed that soil microbial diversity decreases with land use intensification and climate change in the global background. It is essential to investigate whether the reduction in soil microbial diversity can affect soil multifunctionality. Thus, in this study, the dilution-to-extinction method was used to construct the gradient of soil microbial diversity, combined with high-throughput sequencing to explore the impact of the reduction in bacterial, fungal, and protist diversity on soil multifunctionality. The results showed that the soil microbial alpha diversity (richness and Shannon index) was significantly lower than that of the original soil. Principal coordinate analysis (PCoA) showed that the microbial community structure of original soil was significantly different from that of diluted soil, and the response of bacterial and fungal communities to diluted soil was higher than that of protists. The regression model showed that there was a significant negative linear relationship between the average response value of soil multi-function and the index of microbial diversity, indicating that the change in soil microbial community was the key factor in regulating soil multifunctionality. The regression model showed that there was a significant negative linear relationship between soil multifunctionality and microbial diversity, indicating that the change in soil microbial community was the key factor to regulate soil multi-kinetic energy. Through the aggregated boosted tree analysis (ABT) and regression model, we found that some specific microbial groups, such as the Solacocozyma and Holtermaniella of fungi and Rudaea of bacteria, could significantly promote the change in soil multifunctionality, which showed that key microbial taxa play an indicative role in biological processes. Furthermore, the structural equation model revealed that bacteria could affect soil multifunctionality through the interaction between microbiomes, which was the key biological factor driving the change in soil multifunctionality. This study provided experimental evidence for the impact of soil microbial diversity on soil multifunctionality, and promoted the notion that maintaining a certain diversity of soil microbial community in a single agricultural ecosystem, especially the diversity of key microbial taxa, is of great significance to the sustainable development of ecosystem function in the future.


Subject(s)
Microbiota , Soil , Soil/chemistry , Soil Microbiology , Biodiversity , Climate Change , Bacteria/genetics
12.
Front Microbiol ; 13: 1008744, 2022.
Article in English | MEDLINE | ID: mdl-36246287

ABSTRACT

Organic matter input regulates the rate and temperature sensitivity (expressed as Q 10) of soil organic matter (SOM) decomposition by changing microbial composition and activities. It remains unclear how the incorporation of litter-made biochar instead of litter affects the Q 10 of SOM decomposition. Using a unique combination of two-and three-source partitioning methods (isotopic discrimination between C3/C4 pathways and 14C labeling), we investigated: (1) how maize litter versus litter-made biochar (of C4 origin) addition influenced the Q 10 of SOM (C3 origin) under 10°C warming, and (2) how the litter or biochar amendments affected the Q 10 of 14C-labeled fresh organic matter (FOM) after long-term incubation. Compared with biochar addition, litter increased the rates and Q 10 of mass-specific respiration, SOM and FOM decomposition, as well as the contents of SOM-derived dissolved organic C (DOC) and total phospholipid fatty acids (PLFA). Litter-amended soils have much higher activities (V max) of ß-glucosidase, N-acetyl-ß-glucosaminidase, and leucine aminopeptidase, suggesting larger enzyme pools than in soils with biochar. The Q 10 of enzyme V max (1.6-2.0) and K m (1.2-1.4) were similar between litter-and biochar-amended soils, and remained stable with warming. However, warming reduced microbial biomass (PLFA) and enzyme activity (V max), suggesting decreased enzyme production associated with smaller microbial biomass or faster enzyme turnover at higher temperatures. Reductions in PLFA content and enzyme V max due to warming were larger in litter-amended soils (by 31%) than in the control and biochar-amended soils (by 4-11%), implying the active litter-feeding microorganisms have a smaller degree of heat tolerance than the inactive microorganisms under biochar amendments. The reduction in enzyme activity (V max) by warming was lower in soils with biochar than in the control soil. Our modeling suggested that the higher Q 10 in litter-amended soils was mainly caused by faster C loss under warming, linked to reductions in microbial biomass and growth efficiency, rather than the slightly increased SOM-originated substrate availability (DOC). Overall, using straw-made biochar instead of straw per se as a soil amendment lowers the Q 10 of SOM and FOM by making microbial communities and enzyme pools more temperature-tolerant, and consequently reduces SOM losses under warming.

13.
Huan Jing Ke Xue ; 43(10): 4745-4754, 2022 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-36224160

ABSTRACT

Film mulching is an important practice to increase the yield and income in agricultural production. Soil samples were collected from four farmland sites with different mulching years to reveal the effect of long-term plastic mulching on characteristics of soil microbial community structure. In order to explore the long-term effect of soil microbial community change and its effect on the microbial ecological environment, high-throughput sequencing technology was used to analyze the changes in soil bacterial and fungal community structure. The results showed that long-term film mulching had no significant effect on soil bacterial diversity but decreased fungal diversity. Long-term film mulching decreased the abundance of Acidobacteriota and Mortierellomycetes and increased the abundance of Actinobacteriota. Long-term film mulching enriched the beneficial microbial communities such as Bacillus, Nocardioidaceae, Aspergillus, and Hypocreales in soil. However, long-term film mulching indued a simple and fragile soil fungal co-occurrence network pattern. The unidentified Sordariales under Ascomycota was the only key species in the fungal co-occurrence network, which resulted in potential risks to the ecological environment of the farmland soil. This study provided a theoretical basis for further understanding the effects of long-term film mulching on the ecological and environmental effects of microorganisms in farmland.


Subject(s)
Microbiota , Soil , Agriculture/methods , Bacteria , China , Plastics , Soil/chemistry , Soil Microbiology
14.
Rapid Commun Mass Spectrom ; 36(21): e9390, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36056455

ABSTRACT

RATIONALE: The amino acid-nitrogen (AA-N) isotope analysis of naturally abundant or isotope-labeled samples is indispensable for tracing nitrogen transfer in soil nitrogen biogeochemical cycling processes. Despite the usefulness of AA-N isotope analysis, the preparation methods are complex and time-consuming, and necessitate the use of toxic reagents. METHODS: We present an improved, rapid method for AA-N isotope analysis with high precision. At a high pH, AA-N was released and oxidized to N2 O using ClO- under vacuum. Additionally, purge-and-trap isotope ratio mass spectrometry was used to analyze N2 O. Moreover, we investigated the effect of various factors on the N2 O conversion process with glycine and applied the results to seven representative single-N AAs (alanine, serine, cysteine, aspartic acid, glutamic acid, leucine, and phenylalanine) and five poly-N AAs (lysine, arginine, histidine, tryptophan, and asparagine), as well as side-chain analogs, blank reagent, and other N forms. RESULTS: The concentration of ClO- and the pH were determined to be crucial factors for achieving desirable AA-N to N2 O conversion efficiencies. Glycine-N had the highest N2 O yield of 70%, with isotopic results consistent with those of the reference values at a high precision (within 0.5‰ for natural abundance and 0.01 atom% for 15 N-enrichment) at the nanomolar N level. Additionally, the α-NH2 AAs were labile, and the single-N AAs were more easily converted to N2 O than poly-N AAs. With the exception of γ-aminobutyric acid, the N2 O conversion efficiencies of the side-chain N analogs were very low (below 5%). This method was also applicable to the 15 N analysis of the total free AAs in complex soil samples without interference from analytical blanks and other forms of N. CONCLUSIONS: Our method is highly selective for the α-NH2 groups of an amino acid, and the oxidation of the side chain is difficult. In addition, the method is sensitive, rapid, and convenient, and does not require toxic reagents.


Subject(s)
Nitrogen , Soil , Alanine , Amino Acids/chemistry , Arginine , Asparagine , Aspartic Acid , Cysteine , Glutamic Acid , Glycine , Histidine , Leucine , Lysine , Nitrogen/analysis , Nitrogen Isotopes/analysis , Phenylalanine , Serine , Tryptophan , gamma-Aminobutyric Acid
15.
Glob Chang Biol ; 28(22): 6711-6727, 2022 11.
Article in English | MEDLINE | ID: mdl-35986445

ABSTRACT

Paddies contain 78% higher organic carbon (C) stocks than adjacent upland soils, and iron (Fe) plaque formation on rice roots is one of the mechanisms that traps C. The process sequence, extent and global relevance of this C stabilization mechanism under oxic/anoxic conditions remains unclear. We quantified and localized the contribution of Fe plaque to organic matter stabilization in a microoxic area (rice rhizosphere) and evaluated roles of this C trap for global C sequestration in paddy soils. Visualization and localization of pH by imaging with planar optodes, enzyme activities by zymography, and root exudation by 14 C imaging, as well as upscale modeling enabled linkage of three groups of rhizosphere processes that are responsible for C stabilization from the micro- (root) to the macro- (ecosystem) levels. The 14 C activity in soil (reflecting stabilization of rhizodeposits) with Fe2+ addition was 1.4-1.5 times higher than that in the control and phosphate addition soils. Perfect co-localization of the hotspots of ß-glucosidase activity (by zymography) with root exudation (14 C) showed that labile C and high enzyme activities were localized within Fe plaques. Fe2+ addition to soil and its microbial oxidation to Fe3+ by radial oxygen release from rice roots increased Fe plaque (Fe3+ ) formation by 1.7-2.5 times. The C amounts trapped by Fe plaque increased by 1.1 times after Fe2+ addition. Therefore, Fe plaque formed from amorphous and complex Fe (oxyhydr)oxides on the root surface act as a "rusty sink" for organic matter. Considering the area of coverage of paddy soils globally, upscaling by model revealed the radial oxygen loss from roots and bacterial Fe oxidation may trap up to 130 Mg C in Fe plaques per rice season. This represents an important annual surplus of new and stable C to the existing C pool under long-term rice cropping.


Subject(s)
Cellulases , Oryza , Soil Pollutants , Carbon , Ecosystem , Iron/analysis , Oxides , Oxygen , Phosphates , Plant Roots/chemistry , Soil , Soil Pollutants/analysis
16.
J Hazard Mater ; 438: 129547, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35999743

ABSTRACT

Microplastics can perturb microbial nutrient-mining strategies. However, the mechanism by which microplastics affect the resource-acquisition strategies of crops in agricultural systems remains unknown. The nutrient-acquisition potential of crops and microbes was investigated under treatments with two common microplastics (polyethylene [PE] and polyvinyl chloride [PVC]) at 0%, 1%, and 5% (w/w). Different root resource-acquisition strategies disturbed microbial nutrient turnover in the rhizosphere in response to microplastic addition. Specifically, the ß-1,4-glucosidase (BG) hotspot expanded, whereas the rhizosphere expansion of BG activity decreased. A decrease of less than PE1% (w/w) and an expansion of less than PE5% (w/w) in the 1,4-N-acetyl-glucosaminidase (NAG) hotspot with wider rhizosphere expansion of NAG activity indicated that higher doses of PE allow roots to uptake additional N. The phosphomonoesterase (PHOS) hotspot decreased in PE1% (w/w) and expanded in PE5% (w/w), but rhizosphere expansion did not change under PE treatments. However, both NAG and PHOS hotspots expanded with decreasing rhizosphere expansion under PVC treatments, indicating that PVC limits the utilization of available N and P, forcing the crop to obtain nutrients from the narrow root zone. These results indicate that adding PE microplastics increases the demand for and consumption of NH4+-N and NO3--N by wheat.


Subject(s)
Microplastics , Soil , Crops, Agricultural , Nutrients , Plastics , Polyvinyl Chloride , Rhizosphere , Soil Microbiology , Triticum
17.
Huan Jing Ke Xue ; 43(8): 4372-4378, 2022 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-35971733

ABSTRACT

Long-term straw returning to the field changes the environmental conditions of rice paddy soil, which affects the mineralization and priming effect of residual rice roots in the soil, but the direction and intensity of its influence is not clear. Therefore, based on a long-term fertilization field experiment, 13C-CO2 isotopic labeling technology and laboratorial incubation were used to analyze the characteristics of mineralization of rice roots and native soil organic carbon, the intensity and direction of the priming effect, and the source partitioning of CO2 emissions in three treatments, consisting of no fertilization (CK), chemical fertilizer (CF), and straw returning with chemical fertilizer (CFS). The results showed that after 120 days of flooding incubation, the root residue (R) increased the cumulative CO2 emissions by 617.41-726.27 mg·kg-1. The cumulative CO2 emissions from roots and root mineralized proportions in the CFS+R and CF+R treatments were 470.82 and 444.04 mg·kg-1, respectively, and 18.8% and 17.8%, respectively. These were significantly higher than those in the CK+R treatment (384.19 mg·kg-1, 15.4%). There was no significant difference in the cumulative CO2 emissions from native soil organic carbon among the three treatments. However, the mineralized proportion of native soil organic carbon in the CFS+R treatment (4.2%) was significantly lower than that in the CF+R and CK+R treatments (5.4% and 5.8%). The priming effect in the CFS+R treatment was 29.6%, which was significantly lower than that in the CK+R treatment (42.5%) and higher than that in the CF+R treatment (14.4%). A total of 23.47% to 27.59% of the cumulative CO2 emission of the flooded paddy soil was from the roots, and the remainder was from the soil. In addition, the proportion of CO2 emission caused by the priming effect was smaller in the CFS+R treatment than that in the CK+R treatment and larger than that in the CF+R treatment. In summary, the long-term straw returning in the flooded paddy soil will increase the mineralization potential of rice roots, but it is more conducive to the stability of the native soil organic carbon.


Subject(s)
Oryza , Agriculture/methods , Carbon/chemistry , Carbon Dioxide , Fertilizers/analysis , Oryza/chemistry , Soil/chemistry
18.
Sci Total Environ ; 851(Pt 1): 158130, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-35995168

ABSTRACT

The imbalance of terrestrial carbon (C) inputs versus losses to extreme precipitation can have consequences for ecosystem carbon balances. However, the current understanding of how ecosystem processes will respond to predicted extreme dry and wet years is limited. The current study was conducted for three years field experiment to examine the effects of environmental variables and soil microbes on soil respiration (Rs), autotrophic respiration (Ra) and heterotrophic respiration (Rh) under extreme wet and dry conditions in mowed and unmowed grassland of Inner Mongolia. Across treatments (i.e. control, dry spring, wet spring, dry summer and wet summer), the mean of Rs was increased by 24.9 % and 24.1 % in the wet spring and wet summer precipitation treatments, respectively in mowed grassland. In other hand, the mean of Rs was decreased by -22.1 % and -3.5 % in dry spring and dry summer precipitation treatments, respectively in mowed grassland. The relative contribution of Rh and Ra to Rs showed a significant (p < 0.05) change among simulated precipitation treatments with the highest value (76.18 %) in wet summer and 26.41 % in dry summer, respectively under mowed grassland. Rs was significantly (p < 0.05) affected by the interactive effect of extreme precipitation and mowing treatments in 2020 and 2021. The effects of precipitation change via these biotic and abiotic factors explained by 52 % and 81 % in Ra and Rh, respectively in mowed grassland. The changes in microbial biomass carbon (MBC) and nitrogen (MBN) had significant (p < 0.05) direct effects on Rh in both mowed and unmowed grasslands. The influence of biotic and abiotic factors on Rs was stronger in mowed grasslands with higher standardized regression weights than in unmowed grassland (0.78 vs. 0.69). These findings highlight the importance of incorporating extreme precipitation events and mowing in regulating the responses of C cycling to global change in the semiarid Eurasian meadow steppe.


Subject(s)
Grassland , Soil , Carbon , Ecosystem , Nitrogen/analysis , Respiration
19.
Sci Total Environ ; 846: 157517, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-35872205

ABSTRACT

Microbial mineralization of dissolved organic matter (DOM) plays an important role in regulating C and nutrient cycling. Viruses are the most abundant biological agents on Earth, but their effect on the density and activity of soil microorganisms and, consequently, on mineralization of DOM under different temperatures remains poorly understood. To assess the impact of viruses on DOM mineralization, we added soil phage concentrate (active vs. inactive phage control) to four DOM extracts containing inoculated microbial communities and incubated them at 18 °C and 23 °C for 32 days. Infection with active phages generally decreased DOM mineralization at day one and showed accelerated DOM mineralization later (especially from day 5 to 15) compared to that with the inactivated phages. Overall, phage infection increased the microbially driven CO2 release. Notably, while higher temperature increased the total CO2 release, the cumulative CO2 release induced by phage infection (difference between active phages and inactivated control) was not affected. However, higher temperatures advanced the response time of the phages but shortening its active period. Our findings suggest that bacterial predation by phages can significantly affect soil DOM mineralization. Therefore, higher temperatures may accelerate host-phage interactions and thus, the duration of C recycling.


Subject(s)
Bacteriophages , Soil , Carbon , Carbon Dioxide , Dissolved Organic Matter , Temperature
20.
World J Microbiol Biotechnol ; 38(9): 155, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35796795

ABSTRACT

Characterizing the microbial communities associated with soil-borne disease incidence is a key approach in understanding the potential role of microbes in protecting crops from pathogens. In this study, we compared the soil properties and microbial composition of the rhizosphere soil and roots of healthy and bacterial wilt-infected tobacco plants to assess their potential influence on plant health. Our results revealed that the relative abundance of pathogens was higher in diseased plants than in healthy plants. Moreover, compared with healthy plants, there was a significantly higher microbial alpha diversity in the roots and rhizosphere soil of diseased plants. In addition, we detected a lower abundance of certain plant microbiota, including species in the genera Penicillium, Trichoderma, and Burkholderia in the rhizosphere of diseased plants, which were found to be significantly negatively associated with the relative abundance of Ralstonia. Indeed, compared with healthy plants, the co-occurrence networks of diseased plants included a larger number of associations linked to plant health. Furthermore, structural equation modeling revealed that these specific microbes were correlated with disease suppression, thereby implying that they may play important roles in maintaining plant health. In conclusion, our findings provide important insights into the relationships between soil-borne disease incidence and changes in the belowground microbial community. These findings will serve as a basis for further research investigating the use of specific plant-associated genera to inhibit soil-borne diseases.


Subject(s)
Microbiota , Nicotiana , Bacteria/genetics , Fungi , Plant Diseases/microbiology , Plant Roots/microbiology , Rhizosphere , Soil/chemistry , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...