Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bio Protoc ; 14(6): e4956, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38841289

ABSTRACT

Erwinia persicina is a gram-negative bacterium that causes diseases in plants. Recently, E. persicina BST187 was shown to exhibit broad-spectrum antibacterial activity due to its inhibitory effects on bacterial acetyl-CoA carboxylase, demonstrating promising potential as a biological control agent. However, the lack of suitable genetic manipulation techniques limits its exploitation and industrial application. Here, we developed an efficient transformation system for E. persicina. Using pET28a as the starting vector, the expression cassette of the red fluorescent protein-encoding gene with the strong promoter J23119 was constructed and transformed into BST187 competent cells to verify the overexpression system. Moreover, suicide plasmid-mediated genome editing systems was developed, and lacZ was knocked out of BST187 genome by parental conjugation transfer using the recombinant suicide vector pKNOCK-sacB-km-lacZ. Therefore, both the transformation and suicide plasmid-mediated genome editing system will greatly facilitate genetic manipulations in E. persicina and promote its development and application. Key features • Our studies establish a genetic manipulation system for Erwinia persicina, providing a versatile tool for studying the gene function of non-model microorganisms. • Requires approximately 6-10 days to complete modification of a chromosome locus.

2.
Appl Microbiol Biotechnol ; 107(22): 6775-6788, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37715803

ABSTRACT

Andrimid is a potent antibiotic that inhibits acetyl-CoA carboxylase. However, its low biological yield and complex chemical synthesis have hindered its large-scale application. In this study, we found that the LysR-type transcriptional activator AdmX controls andrimid yield by adjusting its expression level in the andrimid-producing bacterium Erwinia persicina strain BST187. Our results showed that gradually increasing of admX transcriptional levels significantly improved andrimid yield, while the yield declined when admX was overexpressed excessively. To further estimate the effect of AdmX on andrimid promotion, we fitted and developed a model which was y = -0.5576x2 + 61.945x + 800.63 (R2 = 0.9591), where x represents the admX transcriptional level and y represents andrimid yield. Andrimid yield of admX overexpression strain BST187ΔadmX/pET28a-Pgap-1::admX was greatly improved by 260%, which was reported for the first time that andrimid yield could be promoted by genetic engineering. Thus, this study provides important insights that the biosynthesis of andrimid would be improved by bioengineering and sheds lights on the potential application of andrimid in both biomedicine and bioagricultural manipulation with its large-scale production in the future. KEY POINTS: • Andrimid production can be greatly promoted by genetic engineering on non-model chassis. • The relationship between AdmX abundance and andrimid yield in Erwinia persicina strain BST187 might be parabolic. • Erwinia persicina BST187 combined with chassis modification enable the promising applications in andrimid industrialization.

3.
BMC Microbiol ; 23(1): 268, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749510

ABSTRACT

BACKGROUND: Andrimid is reported to be a novel kind of polyketide-nonribosomal peptide hybrid product (PK-NRPs) that inhibits fatty acid biosynthesis in bacteria. Considering its great potential in biomedicine and biofarming, intensive studies have been conducted to increase the production of andrimid to overcome the excessive costs of chemosynthesis. In screening for species with broad-spectrum antibacterial activity, we detected andrimid in the fermentation products of Erwinia persicina BST187. To increase andrimid production, the BST187 fermentation medium formulation and fermentation conditions were optimized by using systematic design of experiments (One-Factor-At-A-Time, Plackett-Burman design, Response Surface Methodology). RESULTS: The results indicate that the actual andrimid production reached 140.3 ± 1.28 mg/L under the optimized conditions (trisodium citrate dihydrate-30 g/L, beef extract-17.1 g/L, MgCl2·6H2O-100 mM, inoculation amount-1%, initial pH-7.0, fermentation time-36 h, temperature-19.7℃), which is 20-fold greater than the initial condition without optimization (7.00 ± 0.40 mg/L), consistent with the improved antibacterial effect of the fermentation supernatant. CONCLUSIONS: The present study provides valuable information for improving andrimid production via optimization of the fermentation process, which will be of great value in the future industrialization of andrimid production.


Subject(s)
Anti-Bacterial Agents , Erwinia , Cattle , Animals , Fermentation , Anti-Bacterial Agents/pharmacology
4.
Plant Dis ; 2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36774584

ABSTRACT

Potato (Solanum tuberosum) plants showing blackleg and soft rot symptoms were collected at a commercial vegetable farm near Newmanstown, PA in August 2021 (Fig. S1). The incidence of potato blackleg in the unirrigated field was about 5 to 8%, but approximately 30% in the irrigated field. The diseased stems were cut into 5 cm and surface disinfected. The stem segments were placed into a 50-mL tube containing 15 mL of sterile water for 15 min for bacterial release. The bacterial suspension was streaked on crystal violet polypectate (CVP) (Hélias et al. 2012) plates and incubated at 28°C for 48 h. Three single colonies produced pits on CVP were picked and purified. Genomic DNA of all three isolates were extracted using the FastDNA Spin Kit (MP Biomedicals, Santa Ana, CA). Polymerase chain reaction (PCR) was performed using all three extracted DNAs as a template with the primer pairs gapA 7F/938R (Cigna et al. 2017), recA F/R (Waleron et al. 2001), dnaA F/R (Schneider et al. 2011) and dnaX F/R (Slawiak et al. 2009) targeting the gapA, recA, dnaA and dnaX genes, respectively. Isolate 21PA01 was further studied as a representative isolate. PCR amplicons derived from both forward and reverse primers were sequenced and analyzed using the BLAST algorithm against the NCBI database (https://www.ncbi.nlm.nih.gov). The regions of gapA (GenBank accession No. ON989738), recA (ON989739), dnaA (OP121183), and dnaX (OP121184) had 99.86%, 100%, 98.88%, and 100% identities with Pectobacterium brasiliense strains S1.16.01.3M (MN167062.1), BL-2 (MW721598.1), IPO:4132 (CP059956.1), and BL-2 (MW721603.1), respectively. A phylogenetic maximum-likelihood tree of the concatenated genes with the length of 2551 bp was constructed to visualize the relationship among different species of Dickeya and Pectobacterium. As a result, 21PA01 was in a single monophyletic cluster with other Pectobacterium brasiliense reference strains (Fig. S2 C). To confirm the pathogen, Koch's postulates were performed. Seed pieces of potato 'Lamoka' were planted in potting mix in one-gallon plastic pots in a greenhouse. Three weeks after emergence, the stems of three plants were each injected with 10 µL of bacteria suspension of either 21PA01 at 107 CFU/mL, P. parmentieri ME175 in tryptic soy broth (TSB) at 107 CFU/mL or TSB at 2 cm above the soil line. Seven days after inoculation, stems inoculated with 21PA01 and ME175 showed black and rotten symptoms, whereas the TSB-injected control plants remained symptomless. In addition, 'Lamoka' tubers were inoculated by placing 10 µL 21PA01 and ME175 suspensions at 107 CFU/mL, and TSB in a 1-cm-deep hole poked in a tuber separately and then sealed with petroleum gel, followed by incubation in a moist chamber at 22 °C for 4 d. The 21PA01 and ME175 inoculated tubers showed soft rot symptoms, but the TSB treatment had no symptoms. Bacterial colonies were isolated from the infected stems and confirmed by the DNA sequences as described above. PCR result was negative on control plant samples. Both stem and tuber inoculation trials were repeated two times, and the results were consistent. Thus, 21PA01 was identified as Pectobacterium brasiliense. To our knowledge, this is the first report of P. brasiliense infecting potatoes in Pennsylvania, USA, although it has been reported somewhere else (van der Merwe et al. 2010, Zhao et al. 2018). This could be a new species in Northeastern US.

5.
Plant Dis ; 107(3): 834-839, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35997670

ABSTRACT

Verticillium dahliae causes Verticillium wilt, resulting in significant losses to potato production. Benzovindiflupyr, a succinate dehydrogenase inhibitor, effectively controls V. dahliae. However, frequent applications of the chemical may expedite the development of fungicide resistance in the pathogen population. To evaluate the risk of benzovindiflupyr resistance, 38 V. dahliae strains were obtained from diseased potatoes in Maine. The sensitivity of the field population was determined based on effective concentration for 50% inhibition (EC50), which ranged from 0.07 to 11.28 µg ml-1 with a median of 1.08. Segregated clusters of EC50 values indicated that Maine V. dahliae populations have developed benzovindiflupyr resistance. By exposing conidia of V. dahliae to a high concentration of benzovindiflupyr, 18 benzovindiflupyr-resistant mutants were obtained. To examine their fitness, the mutants were continuously subculture-transferred for up to 10 generations. Mycelial growth, conidial production, competitiveness, pathogenicity, and cross resistance of the 10th generation mutants were examined. Results showed that 50% of the resistant mutants retained an adaptive level in mycelial growth, and 60% maintained conidial production similar to their parents. Pathogenicity did not change for any of the mutants. No cross resistance was detected between benzovindiflupyr and either azoxystrobin, boscalid, fluopyram, or pyrimethanil. Thus, the resistance risk in V. dahliae to benzovindiflupyr should be considered in Maine potato production.


Subject(s)
Ascomycota , Verticillium , Maine , Verticillium/physiology
6.
Plant Dis ; 105(12): 3946-3955, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34213964

ABSTRACT

Dickeya dianthicola has caused an outbreak of blackleg and soft rot of potato in the eastern half of the United States since 2015. To investigate genetic diversity of the pathogen, a comparative analysis was conducted on genomes of D. dianthicola strains. Whole genomes of 16 strains from the United States outbreak were assembled and compared with 16 previously sequenced genomes of D. dianthicola isolated from potato or carnation. Among the 32 strains, eight distinct clades were distinguished based on phylogenomic analysis. The outbreak strains were grouped into three clades, with the majority of the strains in clade I. Clade I strains were unique and homogeneous, suggesting a recent incursion of this strain into potato production from alternative hosts or environmental sources. The pangenome of the 32 strains contained 6,693 genes, 3,377 of which were core genes. By screening primary protein subunits associated with virulence from all U.S. strains, we found that many virulence-related gene clusters, such as plant cell wall degrading enzyme genes, flagellar and chemotaxis related genes, two-component regulatory genes, and type I/II/III secretion system genes, were highly conserved but that type IV and type VI secretion system genes varied. The clade I strains encoded two clusters of type IV secretion systems, whereas the clade II and III strains encoded only one cluster. Clade I and II strains encoded one more VgrG/PAAR spike protein than did clade III. Thus, we predicted that the presence of additional virulence-related genes may have enabled the unique clade I strain to become predominant in the U.S. outbreak.


Subject(s)
Solanum tuberosum , Dickeya , Disease Outbreaks , Plant Diseases , United States
7.
Microorganisms ; 9(2)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557052

ABSTRACT

Dickeya and Pectobacterium spp. both cause blackleg and soft rot of potato, which can be a yield-reducing factor to potato production. The purpose of this study was to examine the interaction between these two bacterial genera causing potato infection, and subsequent disease development and yield responses under field conditions. Analysis of 883 potato samples collected in Northeastern USA using polymerase chain reaction determined that Dickeya dianthicola and P. parmentieri were found in 38.1% and 53.3% of all samples, respectively, and that 20.6% of samples contained both D. dianthicola and P. parmentieri. To further investigate the relationship between the two bacterial species and their interaction, field trials were established. Potato seed pieces of "Russet Burbank", "Lamoka", and "Atlantic" were inoculated with bacterial suspension of D. dianthicola at 107 colony-forming unite (CFU)/mL using a vacuum infiltration method, air dried, and then planted in the field. Two-year results showed that there was a high correlation (p < 0.01) between yield loss and percent of inoculated seed pieces. In a secondary field trial conducted in 2018 and 2019, seed pieces of potato "Shepody", "Lamoka" and "Atlantic" were inoculated with D. dianthicola, P. parmentieri, or mixture of both species, and then planted. In 2019, disease severity index, as measured by the most sensitive variety "Lamoka", was 16.2 with D. dianthicola inoculation, 10.4 with P. parmentieri, 25.4 with inoculation with both bacteria. Two-year data had a similar trend. Thus, D. dianthicola was more virulent than P. parmentieri, but the co-inoculation of the two species resulted in increased disease severity compared to single-species inoculation with either pathogen.

8.
Plant Dis ; 105(7): 1976-1983, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33210970

ABSTRACT

An outbreak of blackleg and soft rot of potato, caused primarily by the bacterial pathogen Dickeya dianthicola, has resulted in significant economic losses in the northeastern United States since 2015. The spread of this seedborne disease is highly associated with seed distribution; therefore, the pathogen likely spread with seed tubers. To describe the blackleg epidemic and track inoculum origins, a total of 1,183 potato samples were collected from 11 states associated with blackleg outbreak from 2015 to 2019. Of these samples, 39.8% tested positive for D. dianthicola. Seventeen isolates of D. dianthicola were recovered from these samples and the genetic diversity of these isolates was examined. Fingerprinting with BOX-A1R-based repetitive extragenic palindromic PCR and phylogenetic analysis based on sequences of the 16S rRNA and gapA genes indicated that D. dianthicola isolates were divided into three genotypes, denoted types I, II, and III. Ninety-five percent of samples from Maine were type I. Type II was found in Maine only in 2015 and 2018. Type II was present throughout the 5 years in some states at a lower percentage than type I. Type III was found in Pennsylvania, New Jersey, and Massachusetts, but not in Maine. Therefore, type I appears to be associated with Maine, but type II appeared to be distributed throughout the northeastern United States. The type II and rarer type III strains were closer to the D. dianthicola type strain isolated from the United Kingdom. This work provides evidence that the outbreak of blackleg of potato in the northeastern United States was caused by multiple strains of D. dianthicola. The geographic origins of these strains remain unknown.


Subject(s)
Solanum tuberosum , Dickeya , Disease Outbreaks , Genotype , Geography , Phylogeny , Plant Diseases , RNA, Ribosomal, 16S/genetics , United States
9.
Front Microbiol ; 10: 131, 2019.
Article in English | MEDLINE | ID: mdl-30804912

ABSTRACT

Pink rot (Phytophthora erythroseptica) of potato is a major concern in many potato production regions. The pathogen produces zoospores that serve as a primary inoculum for infection. To understand how the pink rot incidence is related to pathogen population, qualitative, and quantitative chemical analyses were conducted. It was demonstrated that P. erythroseptica zoospores required a minimal population of 103 zoospores/ml (threshold) for initiating germination and the subsequent infection; the percentage of zoosporic germination was positively correlated with the density of zoospores above the threshold. To elucidate the density-dependent behavior, zoospore exudate (ZE) was extracted from high-density (105/ml) zoospore suspension. Zoosporic inocula of P. erythroseptica at different concentrations were inoculated on potato tubers. Necrotic lesions were caused by inoculum with 100 zoospores per inoculation site; 5 zoospores per site did not cause lesions on the tuber. However, five zoospores did cause lesions when they were placed in ZE, suggesting ZE contained chemical compounds that regulate germination of zoospores. ZE was collected and analyzed using liquid chromatography mass spectroscopy (LC-MS). Results showed that the amino acid leucine was associated with zoosporic germination. Therefore, zoosporic germination and infection of P. erythroseptica were mediated by signaling molecules secreted from zoospores.

SELECTION OF CITATIONS
SEARCH DETAIL
...