Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 23(1): 304, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37286974

ABSTRACT

BACKGROUND: Powdery Mildew of Grapevine belongs to the major diseases in viticulture and requires intensive use of fungicides. Genetic introgression of resistance factors from wild grapes from North America and, recently, China, has been successful, but wine made from those varieties is still confronted with low consumer acceptance, due to differences in taste. RESULTS: The current work explores the potential of Vitis vinifera sylvestris, the wild ancestor of domesticated Grapevine, with respect to containing Erysiphe necator, the causative agent of Powdery Mildew. Making use of a germplasm collection comprising the entire genetic variability remaining in Germany, we show that there is considerable genetic variation in the formation of leaf surface waxes exceeding wax formation in commercial varieties. CONCLUSIONS: High wax formation correlates with reduced susceptibility to controlled infection with E. necator linked with perturbations of appressoria formation. We propose V. vinifera sylvestris as novel source for resistance breeding since it is genetically much closer to domesticated grapevine than the hitherto used sources from beyond the species barrier.


Subject(s)
Ascomycota , Vitis , Vitis/genetics , Disease Resistance/genetics , Ascomycota/genetics , Plant Diseases/genetics , Plant Breeding
2.
Int J Mol Sci ; 24(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36674649

ABSTRACT

Fruit glossiness is an important external fruit quality trait that greatly affects the marketability of fresh cucumber (Cucumis sativus) fruits. A few reports have suggested that the extent of cuticular wax loading influences the glossiness of the fruit surface. In the present study, we tested the wax contents of two inbred cucumber lines, comparing a line with waxy fruit (3401) and a line with glossy fruit (3413). Wax content analysis and dewaxing analysis demonstrate that fruit cuticular wax loads negatively correlate with fruit glossiness in cucumber. Identifying genes that were differentially expressed in fruit pericarps between 3401 and 3413 and genes induced by abscisic acid suggested that the wax biosynthesis gene CsCER6 (Cucumis sativus ECERIFERUM 6) and the regulatory gene CsCER7 may affect wax accumulation on cucumber fruit. Expression analysis via RT-qPCR, GUS-staining, and in situ hybridization revealed that CsCER6 and CsCER7 are abundantly expressed in the epidermis cells in cucumber fruits. Furthermore, the overexpression and RNAi lines of CsCER6 and CsCER7 showed dramatic effects on fruit cuticular wax contents, fruit glossiness, and cuticle permeability. Our results suggest that CsCER6 and CsCER7 positively regulate fruit cuticular wax accumulation and negatively influence fruit glossiness.


Subject(s)
Cucumis sativus , Cucumis sativus/genetics , Cucumis sativus/metabolism , Fruit/genetics , Fruit/metabolism , Abscisic Acid/metabolism , Phenotype , RNA Interference , Waxes/metabolism , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL
...