Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
BMC Pulm Med ; 24(1): 220, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702679

ABSTRACT

BACKGROUND: Recent research suggests that periodontitis can increase the risk of chronic obstructive pulmonary disease (COPD). In this study, we performed two-sample Mendelian randomization (MR) and investigated the causal effect of periodontitis (PD) on the genetic prediction of COPD. The study aimed to estimate how exposures affected outcomes. METHODS: Published data from the Gene-Lifestyle Interaction in the Dental Endpoints (GLIDE) Consortium's genome-wide association studies (GWAS) for periodontitis (17,353 cases and 28,210 controls) and COPD (16,488 cases and 169,688 controls) from European ancestry were utilized. This study employed a two-sample MR analysis approach and applied several complementary methods, including weighted median, inverse variance weighted (IVW), and MR-Egger regression. Multivariable Mendelian randomization (MVMR) analysis was further conducted to mitigate the influence of smoking on COPD. RESULTS: We chose five single-nucleotide polymorphisms (SNPs) as instrumental variables for periodontitis. A strong genetically predicted causal link between periodontitis and COPD, that is, periodontitis as an independent risk factor for COPD was detected. PD (OR = 1.102951, 95% CI: 1.005-1.211, p = 0.039) MR-Egger regression and weighted median analysis results were coincident with those of the IVW method. According to the sensitivity analysis, horizontal pleiotropy's effect on causal estimations seemed unlikely. However, reverse MR analysis revealed no significant genetic causal association between COPD and periodontitis. IVW (OR = 1.048 > 1, 95%CI: 0.973-1.128, p = 0.2082) MR Egger (OR = 0.826, 95%CI:0.658-1.037, p = 0.1104) and weighted median (OR = 1.043, 95%CI: 0.941-1.156, p = 0.4239). The results of multivariable Mendelian randomization (MVMR) analysis, after adjusting for the confounding effect of smoking, suggest a potential causal relationship between periodontitis and COPD (P = 0.035). CONCLUSION: In this study, periodontitis was found to be independent of COPD and a significant risk factor, providing new insights into periodontitis-mediated mechanisms underlying COPD development.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Pulmonary Disease, Chronic Obstructive , Smoking , Humans , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/epidemiology , Risk Factors , Smoking/epidemiology , Smoking/adverse effects , Periodontitis/genetics , Periodontitis/epidemiology , Severity of Illness Index , Genetic Predisposition to Disease , Periodontal Diseases/genetics , Periodontal Diseases/epidemiology
2.
BMC Plant Biol ; 24(1): 445, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778277

ABSTRACT

BACKGROUND: Acer is a taxonomically intractable and speciose genus that contains over 150 species. It is challenging to distinguish Acer species only by morphological method due to their abundant variations. Plastome and nuclear ribosomal DNA (nrDNA) sequences are recommended as powerful next-generation DNA barcodes for species discrimination. However, their efficacies were still poorly studied. The current study will evaluate the application of plastome and nrDNA in species identification and perform phylogenetic analyses for Acer. RESULT: Based on a collection of 83 individuals representing 55 species (c. 55% of Chinese species) from 13 sections, our barcoding analyses demonstrated that plastomes exhibited the highest (90.47%) species discriminatory power among all plastid DNA markers, such as the standard plastid barcodes matK + rbcL + trnH-psbA (61.90%) and ycf1 (76.19%). And the nrDNA (80.95%) revealed higher species resolution than ITS (71.43%). Acer plastomes show abundant interspecific variations, however, species identification failure may be due to the incomplete lineage sorting (ILS) and chloroplast capture resulting from hybridization. We found that the usage of nrDNA contributed to identifying those species that were unidentified by plastomes, implying its capability to some extent to mitigate the impact of hybridization and ILS on species discrimination. However, combining plastome and nrDNA is not recommended given the cytonuclear conflict caused by potential hybridization. Our phylogenetic analysis covering 19 sections (95% sections of Acer) and 128 species (over 80% species of this genus) revealed pervasive inter- and intra-section cytonuclear discordances, hinting that hybridization has played an important role in the evolution of Acer. CONCLUSION: Plastomes and nrDNA can significantly improve the species resolution in Acer. Our phylogenetic analysis uncovered the scope and depth of cytonuclear conflict in Acer, providing important insights into its evolution.


Subject(s)
Acer , DNA Barcoding, Taxonomic , DNA, Plant , DNA, Ribosomal , Phylogeny , Acer/genetics , DNA Barcoding, Taxonomic/methods , DNA, Ribosomal/genetics , DNA, Plant/genetics , Plastids/genetics , Species Specificity , Cell Nucleus/genetics
3.
Hortic Res ; 11(5): uhae079, 2024 May.
Article in English | MEDLINE | ID: mdl-38766534

ABSTRACT

Musa ornata and Musa velutina are members of the Musaceae family and are indigenous to the South and Southeast Asia. They are very popular in the horticultural market, but the lack of genomic sequencing data and genetic studies has hampered efforts to improve their ornamental value. In this study, we generated the first chromosome-level genome assemblies for both species by utilizing Oxford Nanopore long reads and Hi-C reads. The genomes of M. ornata and M. velutina were assembled into 11 pseudochromosomes with genome sizes of 427.85 Mb and 478.10 Mb, respectively. Repetitive sequences comprised 46.70% and 50.91% of the total genomes for M. ornata and M. velutina, respectively. Differentially expressed gene (DEG) and Gene Ontology (GO) enrichment analyses indicated that upregulated genes in the mature pericarps of M. velutina were mainly associated with the saccharide metabolic processes, particularly at the cell wall and extracellular region. Furthermore, we identified polygalacturonase (PG) genes that exhibited higher expression level in mature pericarps of M. velutina compared to other tissues, potentially being accountable for pericarp dehiscence. This study also identified genes associated with anthocyanin biosynthesis pathway. Taken together, the chromosomal-level genome assemblies of M. ornata and M. velutina provide valuable insights into the mechanism of pericarp dehiscence and anthocyanin biosynthesis in banana, which will significantly contribute to future genetic and molecular breeding efforts.

4.
BMC Plant Biol ; 24(1): 111, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360561

ABSTRACT

BACKGROUND: The ephemeral flora of northern Xinjiang, China, plays an important role in the desert ecosystems. However, the evolutionary history of this flora remains unclear. To gain new insights into its origin and evolutionary dynamics, we comprehensively sampled ephemeral plants of Brassicaceae, one of the essential plant groups of the ephemeral flora. RESULTS: We reconstructed a phylogenetic tree using plastid genomes and estimated their divergence times. Our results indicate that ephemeral species began to colonize the arid areas in north Xinjiang during the Early Miocene and there was a greater dispersal of ephemeral species from the surrounding areas into the ephemeral community of north Xinjiang during the Middle and Late Miocene, in contrast to the Early Miocene or Pliocene periods. CONCLUSIONS: Our findings, together with previous studies, suggest that the ephemeral flora originated in the Early Miocene, and species assembly became rapid from the Middle Miocene onwards, possibly attributable to global climate changes and regional geological events.


Subject(s)
Brassicaceae , Ecosystem , Phylogeny , Brassicaceae/genetics , China , Plastids/genetics
5.
Sci Data ; 10(1): 819, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37993453

ABSTRACT

The application of DNA barcoding has been significantly limited by the scarcity of reliable specimens and inadequate coverage and replication across all species. The deficiency of DNA barcode reference coverage is particularly striking for highly biodiverse subtropical and tropical regions. In this study, we present a comprehensive barcode library for woody plants in tropical and subtropical China. Our dataset includes a standard barcode library comprising the four most widely used barcodes (rbcL, matK, ITS, and ITS2) for 2,520 species from 4,654 samples across 49 orders, 144 families, and 693 genera, along with 79 samples identified at the genus level. This dataset also provides a super-barcode library consisting of 1,239 samples from 1,139 species, 411 genera, 113 families, and 40 orders. This newly developed library will serve as a valuable resource for DNA barcoding research in tropical and subtropical China and bordering countries, enable more accurate species identification, and contribute to the conservation and management of tropical and subtropical forests.


Subject(s)
DNA Barcoding, Taxonomic , Plants , China , Forests , Phylogeny , Plants/genetics , Wood
6.
Oral Dis ; 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37849447

ABSTRACT

OBJECTIVES: Confirm that stem cells from human exfoliated deciduous teeth-derived exosomes (SHED-exos) can limit inflammation-triggered epithelial cell apoptosis and explore the molecular mechanism. METHODS: SHED-exos were injected into the submandibular glands (SMGs) of non-obese diabetic (NOD) mice, an animal model of Sjögren's syndrome (SS). Cell death was evaluated by western blotting and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling staining. RESULTS: SHED-exos treatment promoted the saliva flow rates of NOD mice, accompanied by decreased cleaved caspase-3 levels and apoptotic cell numbers in SMGs. SHED-exos inhibited autophagy, pyroptosis, NETosis, ferroptosis, necroptosis and oxeiptosis marker expression in SS-damaged glands. Mechanistically, Kyoto Encyclopedia of Genes and Genomes analysis of exosomal miRNAs suggested that the rat sarcoma virus (RAS)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway might play an important role. In vivo, the expression of Kirsten RAS, Harvey RAS, MEK1/2 and p-ERK1/2 was upregulated in SMGs, and this change was blocked by SHED-exos treatment. In vitro, SHED-exos suppressed p-ERK1/2 activation and increased cleaved caspase-3 and apoptotic cell numbers, which were induced by IFN-γ. CONCLUSION: SHED-exos suppress epithelial cell death, which is responsible for promoting salivary secretion. SHED-exos inhibited inflammation-triggered epithelial cell apoptosis by suppressing p-ERK1/2 activation, which is involved in these effects.

7.
Sci Data ; 10(1): 631, 2023 09 16.
Article in English | MEDLINE | ID: mdl-37716992

ABSTRACT

Musa acuminata is a main wild contributor to banana cultivars. Here, we reported a haplotype-resolved and telomere-to-telomere reference genome of M. acuminata by incorporating PacBio HiFi reads, Nanopore ultra-long reads, and Hi-C data. The genome size of the two haploid assemblies was estimated to be 469.83 Mb and 470.21 Mb, respectively. Multiple assessments confirmed the contiguity (contig N50: 16.53 Mb and 18.58 Mb; LAI: 20.18 and 19.48), completeness (BUSCOs: 98.57% and 98.57%), and correctness (QV: 45.97 and 46.12) of the genome. The repetitive sequences accounted for about half of the genome size. In total, 40,889 and 38,269 protein-coding genes were annotated in the two haploid assemblies, respectively, of which 9.56% and 3.37% were newly predicted. Genome comparison identified a large reciprocal translocation involving 3 Mb and 10 Mb from chromosomes 01 and 04 within M. acuminata. This reference genome of M. acuminata provides a valuable resource for further understanding of subgenome evolution of Musa species, and precise genetic improvement of banana.


Subject(s)
Genome, Plant , Musa , Haploidy , Musa/genetics , Telomere/genetics
8.
Hortic Res ; 10(9): uhad153, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37701454

ABSTRACT

Banana is one of the most important crops of the world. Cavendish-type bananas, which have a monospecific Musa acuminata origin (AAA), account for around half of the global banana production, thereby are of great significance for human societies. However, until now, the high-quality haplotype-resolved reference genome was still undecoded for banana cultivars. Here, we reported the telomere-to-telomere (T2T) and haplotype-resolved reference genome of 'Baxijiao' (Cavendish) consisting of three haploid assemblies. The sizes of the three haploid assemblies were estimated to be 477.16 Mb, 477.18 Mb, and 469.57 Mb, respectively. Although with monospecific origins, the three haploid assemblies showed great differences with low levels of sequence collinearity. Several large reciprocal translocations were identified among chromosomes 1, 4, and 7. An expansion of gene families that might affect fruit quality and aroma was detected, such as those belonging to sucrose/disaccharide/oligosaccharide catabolic processes, sucrose metabolic process, starch metabolic process, and aromatic compound biosynthetic process. Besides, an expansion of gene families related to anther and pollen development was observed, which could be associated with parthenocarpy and sterility of the Cavendish cultivar. Finally, much fewer resistance genes were identified in 'Baxijiao' than in M. acuminata, particularly in the gene clusters in chromosomes 3 and 10, providing potential targets to explore for molecular analysis of disease resistance in banana. This T2T haplotype-resolved reference genome will thus be a valuable genetic resource for biological studies, molecular breeding, and genetic improvement of banana.

9.
BMC Plant Biol ; 23(1): 359, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37452336

ABSTRACT

BACKGROUND: Lysimachia L., the second largest genus within the subfamily Myrsinoideae of Primulaceae, comprises approximately 250 species worldwide. China is the species diversity center of Lysimachia, containing approximately 150 species. Despite advances in the backbone phylogeny of Lysimachia, species-level relationships remain poorly understood due to limited genomic information. This study analyzed 50 complete plastomes for 46 Lysimachia species. We aimed to identify the plastome structure features and hypervariable loci of Lysimachia. Additionally, the phylogenetic relationships and phylogenetic conflict signals in Lysimachia were examined. RESULTS: These fifty plastomes within Lysimachia had the typical quadripartite structure, with lengths varying from 152,691 to 155,784 bp. Plastome size was positively correlated with IR and intron length. Thirteen highly variable regions in Lysimachia plastomes were identified. Additionally, ndhB, petB and ycf2 were found to be under positive selection. Plastid ML trees and species tree strongly supported that L. maritima as sister to subg. Palladia + subg. Lysimachia (Christinae clade), while the nrDNA ML tree clearly placed L. maritima and subg. Palladia as a sister group. CONCLUSIONS: The structures of these plastomes of Lysimachia were generally conserved, but potential plastid markers and signatures of positive selection were detected. These genomic data provided new insights into the interspecific relationships of Lysimachia, including the cytonuclear discordance of the position of L. maritima, which may be the result of ghost introgression in the past. Our findings have established a basis for further exploration of the taxonomy, phylogeny and evolutionary history within Lysimachia.


Subject(s)
Genome, Plastid , Primulaceae , Primulaceae/genetics , Phylogeny , Lysimachia , Plastids/genetics , Evolution, Molecular
10.
Sci Data ; 10(1): 294, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37208352

ABSTRACT

Lomas formations or "fog oases" are islands of vegetation in the desert belt of the west coast of South America, with a unique vegetation composition among the world's deserts. However, plant diversity and conservation studies have long been neglected, and there exists a severe gap in plant DNA sequence information. To address the lack of DNA information, we conducted field collections and laboratory DNA sequencing to establish a DNA barcode reference library of Lomas plants from Peru. This database provides 1,207 plant specimens and 3,129 DNA barcodes data corresponding with collections from 16 Lomas locations in Peru, during 2017 and 2018. This database will facilitate both rapid species identification and basic studies on plant diversity, thereby enhancing our understanding of Lomas flora's composition and temporal variation, and providing valuable resources for conserving plant diversity and maintaining the stability of the fragile Lomas ecosystems.


Subject(s)
Ecosystem , Loma , DNA Barcoding, Taxonomic , Loma/genetics , Peru , Plants/genetics
11.
Neurol Ther ; 12(4): 1159-1169, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37184737

ABSTRACT

INTRODUCTION: Previous observational studies have associated periodontitis (PD) with migraine; however, the results are inconclusive and the causality of the association between PD and migraine remains unclear. This two-sample Mendelian randomization (MR) study was performed to explore the bi-directional causal relationship between PD and migraine. METHODS: To investigate the relationship between PD (17,353 cases; 28,210 controls) and migraine (1072 cases; 360,122 controls), we used genetic tools from the largest available genome-wide association study of European descent. Inverse variance-weighted (IVW) and a series of sensitivity analyses were used to explore the association between migraine and PD. We performed an MR study using seven SNPs (single nucleotide polymorphisms) as instrumental variables for PD to investigate the causal relationship between migraine and PD. RESULTS: We found no significant causal relationship between PD and migraine (odds ratio, OR = 1.000; 95% confidence interval, CI = 0.99-1.00; p = 0.65). Similarly, no evidence supported a causal relationship between migraine and PD (OR = 0.07; CI = 2.04 × 10-9-2.65 × 106; p = 0.77). A sensitivity analysis revealed that no potential polymorphic effect (p = 0.356) and heterogeneity (p = 0.652) exists for the variants used in constructing the genetic instrument. CONCLUSIONS: Based on the results of our MR study, there is no causal relationship between PD and migraines or migraines and PD.

12.
Mol Ecol Resour ; 23(6): 1389-1402, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37021680

ABSTRACT

DNA barcoding is a well-established tool for rapid species identification and biodiversity monitoring. A reliable and traceable DNA barcode reference library with extensive coverage is necessary but unavailable for many geographical regions. The arid region in northwestern China, a vast area of about 2.5 million km2 , is ecologically fragile and often overlooked in biodiversity studies. In particular, DNA barcode data from the arid region in China are lacking. We develop and evaluate the efficacy of an extensive DNA barcode library for native flowering plants in the arid region of northwestern China. Plant specimens were collected, identified and vouchered for this purpose. The database utilized four DNA barcode markers, namely rbcL, matK, ITS and ITS2, for 1816 accessions (representing 890 species from 385 genera and 72 families), and consisted of 5196 barcode sequences. Individual barcodes varied in resolution rates: species- and genus-level rates for rbcL, matK, ITS and ITS2 were 79.9%-51.1%/76.1%, 79.9%-67.2%/88.9%, 85.0%-72.0%/88.2% and 81.0%-67.4%/84.9%, respectively. The three-barcode combination of rbcL + matK + ITS (RMI) revealed a higher species- and genus-level resolution (75.5%/92.1%, respectively). A total of 110 plastomes were newly generated as super-barcodes to increase species resolution for seven species-rich genera, namely Astragalus, Caragana, Lactuca, Lappula, Lepidium, Silene and Zygophyllum. Plastomes revealed higher species resolution compared to standard DNA barcodes and their combination. We suggest future databases include super-barcodes, especially for species-rich and complex genera. The plant DNA barcode library in the current study provides a valuable resource for future biological investigations in the arid regions of China.


Subject(s)
DNA Barcoding, Taxonomic , Magnoliopsida , Humans , Magnoliopsida/genetics , DNA, Plant/genetics , Plants/genetics , China , Phylogeny
13.
BMC Biol ; 21(1): 50, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36882831

ABSTRACT

BACKGROUND: Over the past decade, phylogenomics has greatly advanced our knowledge of angiosperm evolution. However, phylogenomic studies of large angiosperm families with complete species or genus-level sampling are still lacking. The palms, Arecaceae, are a large family with ca. 181 genera and 2600 species and are important components of tropical rainforests bearing great cultural and economic significance. Taxonomy and phylogeny of the family have been extensively investigated by a series of molecular phylogenetic studies in the last two decades. Nevertheless, some phylogenetic relationships within the family are not yet well-resolved, especially at the tribal and generic levels, with consequent impacts for downstream research. RESULTS: Plastomes of 182 palm species representing 111 genera were newly sequenced. Combining these with previously published plastid DNA data, we were able to sample 98% of palm genera and conduct a plastid phylogenomic investigation of the family. Maximum likelihood analyses yielded a robustly supported phylogenetic hypothesis. Phylogenetic relationships among all five palm subfamilies and 28 tribes were well-resolved, and most inter-generic phylogenetic relationships were also resolved with strong support. CONCLUSIONS: The inclusion of nearly complete generic-level sampling coupled with nearly complete plastid genomes strengthened our understanding of plastid-based relationships of the palms. This comprehensive plastid genome dataset complements a growing body of nuclear genomic data. Together, these datasets form a novel phylogenomic baseline for the palms and an increasingly robust framework for future comparative biological studies of this exceptionally important plant family.


Subject(s)
Arecaceae , Magnoliopsida , Arecaceae/genetics , Phylogeny , Genomics , Plastids/genetics
14.
Shanghai Kou Qiang Yi Xue ; 32(1): 1-5, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36973835

ABSTRACT

PURPOSE: To compare the incidence of dentinal microcracks after root canal preparation by new generation of nickel-titanium instrument WaveOne Gold, Reciproc Blue with previous WaveOne and Reciproc. METHODS: Ninety extracted single-rooted mandibular premolars were randomly divided into 6 groups(n=15). The root canals were instrumented by using Hand K files, WaveOne, Reciproc, WaveOne Gold and Reciproc Blue. Fifteen teeth were left unprepared and served as negative controls. The root canals were all prepared to 25#. The roots were then sectioned at 3 mm, 6 mm and 9 mm from the apical orifice using a hard tissue slicer. The slices were observed under stereoscopic microscope at ×25 magnification. SPSS 17.0 software package was used for statistical analysis. RESULTS: No dentinal microcrack was found in the hand K files group and negative control group. The reciprocating single files WaveOne, WaveOne Gold, Reciproc and Reciproc Blue all produced dentinal microcracks after root canal preparation. The WaveOne generated the most dentinal microcracks than the hand K files(P<0.05), and the microcracks were mainly concentrated in the middle part of the root. The number of dentinal microcracks caused by Reciproc and Reciproc Blue was the same, with no significant difference(P>0.05). CONCLUSIONS: The new generation of reciprocating files of WaveOne Gold and Reciproc Blue may not increase the incidence of dentinal microcracks after root canal preparation.


Subject(s)
Gold , Root Canal Preparation , Root Canal Preparation/adverse effects , Bicuspid , Research Design , Dental Pulp Cavity , Equipment Design
15.
Hortic Res ; 9: uhac221, 2022.
Article in English | MEDLINE | ID: mdl-36479579

ABSTRACT

The Banana Genome Hub provides centralized access for genome assemblies, annotations, and the extensive related omics resources available for bananas and banana relatives. A series of tools and unique interfaces are implemented to harness the potential of genomics in bananas, leveraging the power of comparative analysis, while recognizing the differences between datasets. Besides effective genomic tools like BLAST and the JBrowse genome browser, additional interfaces enable advanced gene search and gene family analyses including multiple alignments and phylogenies. A synteny viewer enables the comparison of genome structures between chromosome-scale assemblies. Interfaces for differential expression analyses, metabolic pathways and GO enrichment were also added. A catalogue of variants spanning the banana diversity is made available for exploration, filtering, and export to a wide variety of software. Furthermore, we implemented new ways to graphically explore gene presence-absence in pangenomes as well as genome ancestry mosaics for cultivated bananas. Besides, to guide the community in future sequencing efforts, we provide recommendations for nomenclature of locus tags and a curated list of public genomic resources (assemblies, resequencing, high density genotyping) and upcoming resources-planned, ongoing or not yet public. The Banana Genome Hub aims at supporting the banana scientific community for basic, translational, and applied research and can be accessed at https://banana-genome-hub.southgreen.fr.

16.
BMC Genomics ; 23(1): 770, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36424546

ABSTRACT

BACKGROUND: Although knowledge of the sizes, contents, and forms of plant mitochondrial genomes (mitogenomes) is increasing, little is known about the mechanisms underlying their structural diversity. Evolutionary information on the mitogenomes of Primula, an important ornamental taxon, is more limited than the information on their nuclear and plastid counterparts, which has hindered the comprehensive understanding of Primula mitogenomic diversity and evolution. The present study reported and compared three Primula mitogenomes and discussed the size expansion of mitogenomes in Ericales. RESULTS: Mitogenome master circles were sequenced and successfully assembled for three Primula taxa and were compared with publicly available Ericales mitogenomes. The three mitogenomes contained similar gene contents and varied primarily in their structures. The Primula mitogenomes possessed relatively high nucleotide diversity among all examined plant lineages. In addition, high nucleotide diversity was found among Primula species between the Mediterranean and Himalaya-Hengduan Mountains. Most predicted RNA editing sites appeared in the second amino acid codon, increasing the hydrophobic character of the protein. An early stop in atp6 caused by RNA editing was conserved across all examined Ericales species. The interfamilial relationships within Ericales and interspecific relationships within Primula could be well resolved based on mitochondrial data. Transfer of the two longest mitochondrial plastid sequences (MTPTs) occurred before the divergence of Primula and its close relatives, and multiple independent transfers could also occur in a single MTPT sequence. Foreign sequence [MTPTs and mitochondrial nuclear DNA sequences (NUMTs)] uptake and repeats were to some extent associated with changes in Ericales mitogenome size, although none of these relationships were significant overall. CONCLUSIONS: The present study revealed relatively conserved gene contents, gene clusters, RNA editing, and MTPTs but considerable structural variation in Primula mitogenomes. Relatively high nucleotide diversity was found in the Primula mitogenomes. In addition, mitogenomic genes, collinear gene clusters, and locally collinear blocks (LCBs) all showed phylogenetic signals. The evolutionary history of MTPTs in Primula was complicated, even in a single MTPT sequence. Various reasons for the size variation observed in Ericales mitogenomes were found.


Subject(s)
Ericales , Genome, Mitochondrial , Primula , Genome, Mitochondrial/genetics , Primula/genetics , Phylogeny , Ericales/genetics , Evolution, Molecular , DNA, Mitochondrial/genetics , Nucleotides
17.
BMC Genomics ; 23(1): 642, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36076185

ABSTRACT

BACKGROUND: Tribe Cinnamomeae is a species-rich and ecologically important group in tropical and subtropical forests. Previous studies explored its phylogenetic relationships and historical biogeography using limited loci, which might result in biased molecular dating due to insufficient parsimony-informative sites. Thus, 15 plastomes were newly sequenced and combined with published plastomes to study plastome structural variations, gene evolution, phylogenetic relationships, and divergence times of this tribe. RESULTS: Among the 15 newly generated plastomes, 14 ranged from 152,551 bp to 152,847 bp, and the remaining one (Cinnamomum chartophyllum XTBGLQM0164) was 158,657 bp. The inverted repeat (IR) regions of XTBGLQM0164 contained complete ycf2, trnICAU, rpl32, and rpl2. Four hypervariable plastid loci (ycf1, ycf2, ndhF-rpl32-trnLUAG, and petA-psbJ) were identified as candidate DNA barcodes. Divergence times based on a few loci were primarily determined by prior age constraints rather than by DNA data. In contrast, molecular dating using complete plastid protein-coding genes (PCGs) was determined by DNA data rather than by prior age constraints. Dating analyses using PCGs showed that Cinnamomum sect. Camphora diverged from C. sect. Cinnamomum in the late Oligocene (27.47 Ma). CONCLUSIONS: This study reports the first case of drastic IR expansion in tribe Cinnamomeae, and indicates that plastomes have sufficient parsimony-informative sites for molecular dating. Besides, the dating analyses provide preliminary insights into the divergence time within tribe Cinnamomeae and can facilitate future studies on its historical biogeography.


Subject(s)
Lauraceae , Evolution, Molecular , Lauraceae/genetics , Phylogeny , Plastids/genetics
18.
Ecol Evol ; 12(8): e9159, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35919393

ABSTRACT

The Andean plant endemic Puya is a striking example of recent and rapid diversification from central Chile to the northern Andes, tracking mountain uplift. This study generated 12 complete plastomes representing nine Puya species and compared them to five published plastomes for their features, genomic evolution, and phylogeny. The total size of the Puya plastomes ranged from 159,542 to 159,839 bp with 37.3%-37.4% GC content. The Puya plastomes were highly conserved in organization and structure with a typical quadripartite genome structure. Each of the 17 consensus plastomes harbored 133 genes, including 87 protein-coding genes, 38 tRNA (transfer RNA) genes, and eight rRNA (ribosomal RNA) genes; we found 69-78 tandem repeats, 45-60 SSRs (simple sequence repeats), and 8-22 repeat structures among 13 species. Four protein-coding genes were identified under positive site-specific selection in Puya. The complete plastomes and hypervariable regions collectively provided pronounced species discrimination in Puya and a practical tool for future phylogenetic studies. The reconstructed phylogeny and estimated divergence time for the lineage suggest that the diversification of Puya is related to Andean orogeny and Pleistocene climatic oscillations. This study provides plastome resources for species delimitation and novel phylogenetic and biogeographic studies.

19.
AoB Plants ; 14(3): plac011, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35669442

ABSTRACT

The colonization success of a species depends on the interplay between its phenotypic plasticity, adaptive potential and demographic history. Assessing their relative contributions during the different phases of a species range expansion is challenging, and requires large-scale experiments. Here, we investigated the relative contributions of plasticity, performance and demographic history to the worldwide expansion of the shepherd's purse, Capsella bursa-pastoris. We installed two large common gardens of the shepherd's purse, a young, self-fertilizing, allopolyploid weed with a worldwide distribution. One common garden was located in Europe, the other in Asia. We used accessions from three distinct genetic clusters (Middle East, Europe and Asia) that reflect the demographic history of the species. Several life-history traits were measured. To explain the phenotypic variation between and within genetic clusters, we analysed the effects of (i) the genetic clusters, (ii) the phenotypic plasticity and its association to fitness and (iii) the distance in terms of bioclimatic variables between the sampling site of an accession and the common garden, i.e. the environmental distance. Our experiment showed that (i) the performance of C. bursa-pastoris is closely related to its high phenotypic plasticity; (ii) within a common garden, genetic cluster was a main determinant of phenotypic differences; and (iii) at the scale of the experiment, the effect of environmental distance to the common garden could not be distinguished from that of genetic clusters. Phenotypic plasticity and demographic history both play important role at different stages of range expansion. The success of the worldwide expansion of C. bursa-pastoris was undoubtedly influenced by its strong phenotypic plasticity.

20.
New Phytol ; 236(2): 433-446, 2022 10.
Article in English | MEDLINE | ID: mdl-35717562

ABSTRACT

Genome size varies 2400-fold across plants, influencing their evolution through changes in cell size and cell division rates which impact plants' environmental stress tolerance. Repetitive element expansion explains much genome size diversity, and the processes structuring repeat 'communities' are analogous to those structuring ecological communities. However, which environmental stressors influence repeat community dynamics has not yet been examined from an ecological perspective. We measured genome size and leveraged climatic data for 91% of genera within the ecologically diverse palm family (Arecaceae). We then generated genomic repeat profiles for 141 palm species, and analysed repeats using phylogenetically informed linear models to explore relationships between repeat dynamics and environmental factors. We show that palm genome size and repeat 'community' composition are best explained by aridity. Specifically, Ty3-gypsy and TIR elements were more abundant in palm species from wetter environments, which generally had larger genomes, suggesting amplification. By contrast, Ty1-copia and LINE elements were more abundant in drier environments. Our results suggest that water stress inhibits repeat expansion through selection on upper genome size limits. However, elements that may associate with stress-response genes (e.g. Ty1-copia) have amplified in arid-adapted palm species. Overall, we provide novel evidence of climate influencing the assembly of repeat 'communities'.


Subject(s)
Arecaceae , Retroelements , Arecaceae/genetics , Evolution, Molecular , Genome Size , Genome, Plant , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...