Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(22): 12093-12104, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37227815

ABSTRACT

Dual-ion batteries involving anion intercalation into graphite cathodes represent promising battery technologies for low-cost and high-power energy storage. However, the fundamental origins regarding much lower capacities of graphite cathodes in earth abundant and inexpensive multivalent electrolytes than in Li-ion electrolytes remain elusive. Herein, we reveal that the limited anion-storage capacity of a graphite cathode in multivalent electrolytes is rooted in the abnormal multivalent-cation co-intercalation with anions in the form of large-sized anionic complexes. This cation co-intercalation behavior persists throughout the stage evolution of graphite intercalation compounds and leads to a significant decrease of sites practically viable for capacity contribution inside graphite galleries. Further systematic studies illustrate that the phenomenon of cation co-intercalation into graphite is closely related to the high energy penalty of interfacial anion desolvation due to the strong cation-anion association prevalent in multivalent electrolytes. Leveraging this understanding, we verify that promoting ionic dissociation in multivalent electrolytes by employing high-permittivity and oxidation-tolerant co-solvents is effective in suppressing multivalent-cation co-intercalation and thus achieving increased capacity of graphite cathodes. For instance, introducing adiponitrile as a co-solvent to a Mg2+-based carbonate electrolyte leads to 83% less Mg2+ co-intercalation and a ∼29.5% increase in delivered capacity of the graphite cathode.

2.
Int J Biol Macromol ; 189: 715-721, 2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34464639

ABSTRACT

A strategy for preparation of self-reinforced starch films for use as hard capsule material is introduced. In this study, the hydroxypropylated-crosslinked potato starch (HCPS) was prepared and used to reinforce the hydroxypropylated-hydrolyzed potato starch (HHPS) films. The paste properties of starch samples and the morphology of starch films were investigated by a rapid visco analyzer (RVA) and scanning electron microscope (SEM), respectively. It was found that the matrix/particle interface was greatly improved after the hydroxypropylation of crosslinked starch. The strain and toughness of the starch composite films were increased by about 30% and 50% after addition of 10 wt% HCPS particles, respectively. In addition, the self-reinforced starch film also had good oxygen barrier property, with its oxygen permeating coefficient (OPC) at 5.09 × 10-12 cm3·cm/cm2·s·cmHg (50% RH). The fragmentation rate of starch capsules has also decreased, indicating it is an alternative material for the preparation of hard capsules.


Subject(s)
Capsules/chemistry , Starch/chemistry , Calorimetry, Differential Scanning , Cross-Linking Reagents/chemistry , Epoxy Compounds/chemistry , Hydrolysis , Oxygen/chemistry , Solanum tuberosum/chemistry , Spectroscopy, Fourier Transform Infrared , Stress, Mechanical , Surface Properties , Temperature , Tensile Strength , Viscosity , X-Ray Diffraction
3.
Carbohydr Polym ; 222: 115026, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31320057

ABSTRACT

Montmorillonite (MMT) and graphene oxide (GO), as important building block materials, are becoming hot candidates to construct biomimetic hierarchical structure materials. In this work, we fabricated integrated strong and stiff cellulosed-based nanocomposites via a simple water-solution evaporation and hot-pressing technique. It is found there are synergistic effect among the MMT, GO and carboxymethycellulose-Na (CMC-Na) under hot-pressing. Interestingly, it is also proved that there is chemical crosslinking between MMT and GO except hydrogen bonds under our experiment condition. The tensile strength and toughness of graphene oxide/montmorillonite-sodium carboxymethycellulose (GO/MMT-CMC) hybrid films reach up to 320.11 ± 12.22 MPa and 7.79 ± 1.78 MJ/m3, respectively, which were about 2.37 and 4.33 times higher than that of pure nacre; In addition, the artificial composites show excellent oxygen gas barrier and flame resistance properties. When the GO content is about 1.4 wt%, the oxygen permeability of GO/MMT-CMC is 0.94 × 10-12 cm³·cm/cm2·s·cmHg, which is 50.79% lower than that of pure CMC films. Meanwhile, the GO/MMT-CMC ternary nanopapers demonstrate excellent self-extinguishing performance which attract interest in fire-shielding coating.

4.
Carbohydr Polym ; 197: 277-283, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30007614

ABSTRACT

Composite aerogels with excellent mechanical properties were prepared by using carboxymethyl cellulose (CMC) as raw materials, 2D graphene oxide (GO) nanosheets as reinforcement, boric acid (BA) as cross-linker. By controlling the heat transfer rate, composite aerogels with isotropy and anisotropy structure were prepared, the mechanical and heat insulation properties were studied. The isotropy composite aerogel had compression strength of 110 kPa at 60% compression, which was 5 times of the axial and 14 times of the radial of anisotropy structure composite aerogels, and thermal conductivity was also lower than those of two directions of anisotropy composite aerogel. Besides, the mechanical properties of isotropy composite aerogels increased with the increase of GO content. When GO content was up to 5 wt%, the compressive strength and Young's modulus of composite aerogels reached 349 kPa and 1029 kPa, which were 1.6 and 4.5 times that of CMC aerogels, respectively.

5.
ACS Nano ; 11(6): 5717-5725, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28586191

ABSTRACT

In this article, a simple strategy was employed to fabricate bioinspired hybrid composite with carboxymethyl cellulose (CMC), graphene oxide, and reduced graphene oxide/alumina (rGO/Al) by a facile solution casting method. The tensile strength and toughness of rGO/Al-CMC-GO can reach 586.6 ± 12 MPa, 12.1 ± 0.44 MJm-3, respectively, due to the interface strengthening of alumina, which is 1.43 and 12 times higher than steel and about 4.3 and 6.7 times that of nature nacre. The artificial nacre hybrid composite is conductive due to the introduction of rGO/Al on the surface. Interestingly this structure can also be coated on the surface of cotton thread to give the thread good mechanical performance and conductivity. Additionally, the artificial nacre has better fire shielding and gas barrier properties. The oxygen permeability (OP) for 1% rGO/Al-CMC decreased from 0.0265 to 0.003 mLµm m-2 day-1 kpa-1, the water vapor permeability (WVP) decreased from 0.363 to 0.205 gmmm-2 day-1 kpa-1 when the concentration increased from 1% rGO/Al to 6% rGO/Al. It is believed this work provided a simple and feasible strategy to fabricate ultrastrong and ultratough graphene-based artificial nacre multifunctional materials.

6.
ACS Nano ; 11(1): 325-334, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28074649

ABSTRACT

Demands for high strength integrated materials have substantially increased across various kinds of industries. Inspired by the relationship of excellent integration of mechanical properties and hierarchical nano/microscale structure of the natural nacre, a simple and facile method to fabricate high strength integrated artificial nacre based on sodium carboxymethylcellulose (CMC) and borate cross-linked graphene oxide (GO) sheets has been developed. The tensile strength and toughness of cellulose-based hybrid material reached 480.5 ± 13.1 MPa and 11.8 ± 0.4 MJm-3 by a facile in situ reduction and cross-linking reaction between CMC and GO (0.7%), which are 3.55 and 6.55 times that of natural nacre. This hybrid film exhibits better thermal stability and flame retardancy. More interestingly, the hybrid material showed good water stability compared to that in the original water-soluble CMC. This type of hybrid has great potential applications in aerospace, artificial muscle, and tissue engineering.


Subject(s)
Borates/chemistry , Carboxymethylcellulose Sodium/chemistry , Cross-Linking Reagents/chemistry , Graphite/chemistry , Nacre/chemistry , Oxides/chemistry , Molecular Structure , Oxidation-Reduction , Particle Size , Surface Properties
7.
Carbohydr Polym ; 145: 13-9, 2016 07 10.
Article in English | MEDLINE | ID: mdl-27106146

ABSTRACT

A method was presented for fabricating the fluorescent nanocomposites containing CdTe quantum dots (QDs) and montmorillonite (MMT)-chitosan (CS). MMT-CS/CdTe QDs nanocomposites were prepared via a simple, versatile and robust approach combination of covalent and electrostatic assembly methods (Scheme 1). The negatively charged MMT was initially modified with positively charged CS through electrostatic assembly, followed by incorporation of CdTe-QDs into the MMT-CS nanosheets by covalent connections between the amino groups of CS and the carboxylic acid groups of thioglycollic acid (TGA). The X-ray diffraction (XRD), High resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and the FTIR were used to prove the QDs have intercalated into the MMT-CS matrix. The fluorescence emission spectra showed that the MMT-CS/CdTe QDs nanocomposites had the best fluorescence intensity compared with the bare CdTe QDs and CS-QDs.


Subject(s)
Bentonite/chemistry , Cadmium Compounds/chemistry , Chitosan/chemistry , Nanostructures/chemistry , Quantum Dots/chemistry , Tellurium/chemistry , Fluorescence
8.
Carbohydr Polym ; 137: 732-738, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26686186

ABSTRACT

A bio-based hybrid film containing chitosan (CS) and silver nanowires (AgNWs) has been prepared by a simple casting technique. X-ray diffraction (XRD), Fourier infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and UV-visible spectroscopy were employed to characterize the structure of bio-based film. The bio-based hybrid film showed unique performance compared with bare chitosan film. The incorporated nano-silver could improve the strength properly. The results revealed that AgNWs in CS film, improved its tensile strength more than 62% and Young modulus 55% compared with pure chitosan film. On the other hand tensile strength was increased 36.7% with AgNPs. Importantly, the film also exhibited conductivity and antibacterial properties, which may expand its future application.


Subject(s)
Anti-Infective Agents/chemistry , Chitosan/chemistry , Nanowires/chemistry , Silver/chemistry , Escherichia coli/drug effects , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Stress, Mechanical , X-Ray Diffraction
9.
Article in English | MEDLINE | ID: mdl-24553916

ABSTRACT

Recent studies report that a conflict between information from the visual system and vestibular system is one of the main reasons for induction of motion sickness (MS). We may be able to clarify the integration mechanism of visual and vestibular information using an animal model with a visual defect, the retinal degeneration fast (rdf) mouse, and the role of vestibular information in the pathogenesis of MS. The rdf mice and wild-type Kunming mice were subjected to rotary stimulation to induce MS. Conditioned taste anorexia to saccharin solution and behavior score were used to observe the differences in MS sensitivity between two types of mice. The decrease in intake of saccharin solution and the behavior score in rdf mice were greater than those in normal mice. After rotatory stimulation, the reduction of intake mass and the behavior score were greater in rdf mice compared to those of normal mice. The rdf mice were more sensitive to rotation than normal mice. We conclude that visual information plays a role in the pathogenesis of MS. Visual information and vestibular information impact each other and integrate through certain channels in the central nervous system in mice.


Subject(s)
Motion Sickness/physiopathology , Retinal Degeneration/physiopathology , Animals , Anorexia , Conditioning, Psychological , Disease Models, Animal , Drinking , Male , Mice , Motion Sickness/etiology , Physical Stimulation/adverse effects , Rotation/adverse effects , Saccharin , Severity of Illness Index , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...