Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 12: 824578, 2022.
Article in English | MEDLINE | ID: mdl-35372134

ABSTRACT

Coronavirus disease 2019 (COVID-19) remains a serious emerging global health problem, and little is known about the role of oropharynx commensal microbes in infection susceptibility and severity. Here, we present the oropharyngeal microbiota characteristics identified by full-length 16S rRNA gene sequencing through the NANOPORE platform of oropharynx swab specimens from 10 mild COVID-19 patients and 10 healthy controls. Our results revealed a distinct oropharyngeal microbiota composition in mild COVID-19 patients, characterized by enrichment of opportunistic pathogens such as Peptostreptococcus anaerobius and Pseudomonas stutzeri and depletion of Sphingomonas yabuuchiae, Agrobacterium sullae, and Pseudomonas veronii. Based on the relative abundance of the oropharyngeal microbiota at the species level, we built a microbial classifier to distinguish COVID-19 patients from healthy controls, in which P. veronii, Pseudomonas fragi, and S. yabuuchiae were identified as the most prominent signatures for their depletion in the COVID-19 group. Several members of the genus Campylobacter, especially Campylobacter fetus and Campylobacter rectus, which were highly enriched in COVID-19 patients with higher severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load and showed a significant correlation with disease status and several routine clinical blood indicators, indicate that several bacteria may transform into opportunistic pathogen in COVID-19 patients when facing the challenges of viral infection. We also found the diver taxa Streptococcus anginosus and Streptococcus alactolyticus in the network of disease patients, suggesting that these oropharynx microbiota alterations may impact COVID-19 severity by influencing the microbial association patterns. In conclusion, the low sample size of SARS-CoV-2 infection patients (n = 10) here makes these results tentative; however, we have provided the overall characterization that oropharyngeal microbiota alterations and microbial correlation patterns were associated with COVID-19 severity in Anhui Province.


Subject(s)
COVID-19 , Microbiota , Humans , Oropharynx/microbiology , RNA, Ribosomal, 16S/genetics , SARS-CoV-2
2.
Front Med (Lausanne) ; 9: 829273, 2022.
Article in English | MEDLINE | ID: mdl-35223924

ABSTRACT

Detection of serum-specific SARS-CoV-2 antibody has become a complementary means for the identification of coronavirus disease 2019 (COVID-19). As we already know, the neutralizing antibody titers in patients with COVID-19 decrease during the course of time after convalescence, whereas the duration of antibody responses in the convalescent patients has not been defined clearly. In the current study, we collected 148 serum samples from 37 confirmed COVID-19 cases with different disease severities. The neutralizing antibodies (Nabs), IgM and IgG against COVID-19 were determined by CLIA Microparticle and microneutralization assay, respectively. The time duration of serum titers of SARS-CoV-2 antibodies were recorded. Our results indicate that IgG (94.44%) and Nabs (89.19%) can be detected at low levels within 190-266 days of disease onset. The findings can advance knowledge regarding the antibody detection results for COVID-19 patients and provide a method for evaluating the immune response after vaccination.

3.
J Virol Methods ; 295: 114185, 2021 09.
Article in English | MEDLINE | ID: mdl-34051244

ABSTRACT

OBJECTIVE: Viral nucleic acid detection by real-time reverse transcription polymerase chain reaction (qPCR) is the current standard method for diagnosis of SARS-CoV-2 infection. However, due to low viral load in some COVID-19 patients, false negative results from this method have been repeatedly reported. METHOD: In this study, we compared the sensitivity and specificity of digital PCR (dPCR) in simulated samples and clinical samples with qPCR assay through a series of vigorous tests. RESULTS: The results showed that dPCR was more sensitive than qPCR especially for samples with low viral load (≤3 copies). In addition, dPCR had similar specificity as qPCR and could effectively distinguish other human coronaviruses and influenza virus from SARS-CoV-2. More importantly, dPCR was more sensitive than qPCR in detecting the virus in the "negative" samples from recurrent COVID-19 patients. CONCLUSIONS: In summary, dPCR could serve as a powerful complement to the current qPCR method for SARS-CoV-2 detection, especially for the samples with extremely low viral load, such as recurrent COVID-19 patients.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , Viral Load , COVID-19/virology , Humans , RNA, Viral/genetics , Recurrence , SARS-CoV-2/genetics , Sensitivity and Specificity
4.
BMC Infect Dis ; 20(1): 930, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33287717

ABSTRACT

BACKGROUND: COVID-19 is a newly emerging disease caused by a novel coronavirus (SARS-CoV-2), which spread globally in early 2020. Asymptomatic carriers of the virus contribute to the propagation of this disease, and the existence of asymptomatic infection has caused widespread fear and concern in the control of this pandemic. METHODS: In this study, we investigated the origin and transmission route of SARS-CoV-2 in Anhui's two clusters, analyzed the role and infectiousness of asymptomatic patients in disease transmission, and characterized the complete spike gene sequences in the Anhui strains. RESULTS: We conducted an epidemiological investigation of two clusters caused by asymptomatic infections sequenced the spike gene of viruses isolated from 12 patients. All cases of the two clusters we investigated had clear contact histories, both from Wuhan, Hubei province. The viruses isolated from two outbreaks in Anhui were found to show a genetically close link to the virus from Wuhan. In addition, new single nucleotide variations were discovered in the spike gene. CONCLUSIONS: Both clusters may have resulted from close contact and droplet-spreading and asymptomatic infections were identified as the initial cause. We also analyzed the infectiousness of asymptomatic cases and the challenges to the current epidemic to provided information for the development of control strategies.


Subject(s)
Asymptomatic Infections/epidemiology , COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19/transmission , China/epidemiology , Contact Tracing , Disease Hotspot , Disease Outbreaks , Female , Humans , Male , Molecular Epidemiology , Pandemics , Phylogeny , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA
5.
Mol Biomed ; 1(1): 14, 2020.
Article in English | MEDLINE | ID: mdl-34765997

ABSTRACT

The global pandemic of COVID-19 has attracted extensive drug searching interets for the new coronavirus SARS-CoV-2. Although currently several of clinically used "old" drugs have been repurposed to this new disease for the urgent clinical investigation, there is still great demand for more effective therapies for the anti-infections. Here we report the discovery that an "old" drug Emetine could potently inhibit SARS-CoV-2 virus replication and displayed virus entry blocking effect in Vero cells at low dose. In addition, Emetine could significantly reduce the lipopolysaccharide (LPS) induced interleukin-6 (IL-6) protein level and moderately reduce the tumor necrosis factor (TNF-α) protein level in the M1 polarized THP-1 macrophages. In vivo animal pharmacokinetics (PK) study revealed that Emetine was enriched in the lung tissue and had a long retention time (over 12 h). With 1 mg/kg single oral dose, the effective concentration of Emetine in lung was up to 1.8 µM (mice) and 1.6 µM (rats) at 12 h, which is over 200-fold higher than the EC50 of the drug. The potent in vitro antiviral replication efficacy and the high enrichment in target tissue, combining with the well documented safety profiles in human indicate that low dose of Emetine might be a potentially effective anti-SARS-CoV-2 infection therapy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s43556-020-00018-9.

6.
Microb Pathog ; 140: 103940, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31863839

ABSTRACT

H9N2 viruses can cause great economic losses to the domestic poultry industry when co-infected with other influenza viruses or pathogens. . To better understand the molecular characteristics of H9N2 avian influenza viruses (AIVs) and analyze the genetic evolutionary relationship, we isolated three H9N2 subtypes AIVs from nasopharyngeal swab specimens from the three cases reported in Anhui province since 2015, and systematically reviewed the genome-wide data of 21 poultry--isolated H9N2 viruses during 1998-2017. The six internal genes of three human-isolated viruses and recent poultry-isolated viruses (since 2014) in Anhui province presented high gene homologies with HPAI H7N9, even including H10N8 and H5N6. The three human-isolated H9N2 AIVs and poultry-isolated viruses (since 2008) in Anhui province were highly similar, and classified into genotype S. Seven N-linked potential glycosylation sites in the HA protein were detected in the three human-isolated viruses, which also appeared in poultry-isolated H9N2 AIVs. None of the human-isolated H9N2 AIVs had the I368V mutation in PB1 protein, but all the poultry-isolated H9N2 viruses in 2017 carried this mutation. Multidisciplinary, cross-regional and cross-sectoral approaches are warranted to address complex public health challenges and achieve the goal of 'one health'.


Subject(s)
Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/virology , Poultry/virology , Animals , Chickens , China/epidemiology , Genome, Viral , Humans , Incidence , Influenza A Virus, H7N9 Subtype/isolation & purification , Influenza A Virus, H9N2 Subtype/isolation & purification , Influenza in Birds/transmission , Influenza, Human/transmission , Influenza, Human/virology , Phylogeny , Poultry Diseases/transmission , Poultry Diseases/virology , Prevalence
7.
J Invertebr Pathol ; 130: 154-64, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25584432

ABSTRACT

Beauveria bassiana is a kind of world-wide entomopathogenic fungus and can also colonize plant rhizosphere. Previous researches showed differential expression of genes when entomopathogenic fungi are cultured in insect or plant materials. However, so far there is no report on metabolic alterations of B. bassiana in the environments of insect or plant. The purpose of this paper is to address this problem. Herein, we first provide the metabolomic analysis of B. bassiana cultured in insect pupae extracts (derived from Euproctis pseudoconspersa and Bombyx mori, EPP and BMP), plant root exudates (derived from asparagus and carrot, ARE and CRE), distilled water and minimal media (MM), respectively. Principal components analysis (PCA) shows that mycelia cultured in pupae extracts and root exudates are evidently separated and individually separated from MM, which indicates that fungus accommodates to insect and plant environments by different metabolic regulation mechanisms. Subsequently, orthogonal projection on latent structure-discriminant analysis (OPLS-DA) identifies differential metabolites in fungus under three environments relative to MM. Hierarchical clustering analysis (HCA) is performed to cluster compounds based on biochemical relationships, showing that sphingolipids are increased in BMP but are decreased in EPP. This observation further implies that sphingolipid metabolism may be involved in the adaptation of fungus to different hosts. In the meantime, sphingolipids are significantly decreased in root exudates but they are not decreased in distilled water, suggesting that some components of the root exudates can suppress sphingolipid to down-regulate sphingolipid metabolism. Pathway analysis finds that fatty acid metabolism is maintained at high level but non-ribosomal peptides (NRP) synthesis is unaffected in mycelia cultured in pupae extracts. In contrast, fatty acid metabolism is not changed but NRP synthesis is high in mycelia cultured in root exudates and distilled water. This indicates that fungal fatty acid metabolism is enhanced when contacting insect, but when in the absence of insect hosts NRP synthesis is increased. Ornithine, arginine and GABA are decreased in mycelia cultured in pupae extracts and root exudates but remain unchanged in distilled water, which suggests that they may be associated with fungal cross-talk with insects and plants. Trehalose and mannitol are decreased while adenine is increased in three conditions, signifying carbon shortage in cells. Together, these results unveil that B. bassiana has differential metabolic responses in pupae extracts and root exudates, and metabolic similarity in root exudates and distilled water is possibly due to the lack of insect components.


Subject(s)
Beauveria/metabolism , Bombyx/parasitology , Host-Parasite Interactions/physiology , Plant Roots/parasitology , Animals , Cluster Analysis , Principal Component Analysis , Pupa/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...