Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 63(15): 4109-4117, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38856504

ABSTRACT

Coded aperture compressive temporal imaging (CACTI) utilizes compressive sensing (CS) theory to compress three dimensional (3D) signals into 2D measurements for sampling in a single snapshot measurement, which in turn acquires high-dimensional (HD) visual signals. To solve the problems of low quality and slow runtime often encountered in reconstruction, deep learning has become the mainstream for signal reconstruction and has shown superior performance. Currently, however, impressive networks are typically supervised networks with large-sized models and require vast training sets that can be difficult to obtain or expensive. This limits their application in real optical imaging systems. In this paper, we propose a lightweight reconstruction network that recovers HD signals only from compressed measurements with noise and design a block consisting of convolution to extract and fuse local and global features, stacking multiple features to form a lightweight architecture. In addition, we also obtain unsupervised loss functions based on the geometric characteristics of the signal to guarantee the powerful generalization capability of the network in order to approximate the reconstruction process of real optical systems. Experimental results show that our proposed network significantly reduces the model size and not only has high performance in recovering dynamic scenes, but the unsupervised video reconstruction network can approximate its supervised version in terms of reconstruction performance.

2.
J Opt Soc Am A Opt Image Sci Vis ; 40(7): 1468-1477, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37706748

ABSTRACT

Coded aperture compressive temporal imaging (CACTI) is the mapping of multiple frames using different encoding patterns into a single measurement and then using an algorithm to reconstruct the required high-dimensional signals, thus enabling high-speed photography on low-speed cameras. An encoding pattern and a reconstruction algorithm both play a critical role for CACTI. To improve the quality of the reconstruction, in terms of encoding, we took advantage of the reflective properties of the digital micromirror device and used a complementary dual-mask pattern to obtain more projection information. In terms of decoding, we developed what we believe, to the best of our knowledge, is a new model combining the weighted Landweber regularization with the relaxation strategy and a deep denoiser. The experimental results show the superiority of our proposed encoding-decoding combination, which achieves better performance in terms of the peak SNR, structural similarity index measure, and visual effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...