Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 475: 134937, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38889461

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) constitute important organic contaminants that have been degrading coastal ecosystems over the years. Evaluating PAH status in port ecosystems aligns with societal goals of maintaining clean habitats and sustainability. This comprehensive review systematically analyzed 123 articles, exploring the global distribution, sources, and ecological risks linked to PAH contamination in ports, focusing on water, sediment, and biota. The mean concentrations of 16 PAHs in water, sediment, and biota across worldwide ports were 175.63 ± 178.37 ng/L, 1592.65 ± 1836.5 µg/kg, and 268.47 ± 235.84 µg/kg, respectively. In line with PAH emissions and use in Asia, Asian ports had the highest PAH concentrations for water and biota, while African ports had the highest PAH concentrations for sediment. The temporal trend in PAH accumulation in sediments globally suggests stability. However, PAH concentrations in water and biota of global ports exhibit increasing trends, signaling aggravating PAH contamination within port aquatic ecosystems. Some ports exhibited elevated PAH levels, particularly in sediments with 4.5 %, 9.5 %, and 21 % of the ports categorized as very poor, poor, and moderate quality. Some PAH isomers exceeded guidelines, including the carcinogenic Benzo(a)pyrene (BaP). Coal, biomass, and petroleum combustion were major sources for PAHs. The structure of ports significantly influences the concentrations of PAHs. PAH concentrations in sediments of semi-enclosed ports were 3.5 times higher than those in open ports, while PAH concentrations in water and biota of semi-enclosed ports were lower than those in open ports. Finally, risk analyses conducted through Monte Carlo simulation indicated moderate to high risks to aquatic species, with probabilities of 74.8 % in water and 34.4 % in sediments of ports worldwide. This review underscores the imperative to delve deeper into the accumulation of PAHs and similar pollutants in ports for effective management and environmental protection.


Subject(s)
Environmental Monitoring , Geologic Sediments , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Geologic Sediments/analysis , Risk Assessment , Animals , Ships
2.
Environ Pollut ; 338: 122691, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37797922

ABSTRACT

Increasing pollution of microplastics (MPs) and nanoplastics (NPs) has caused widespread concern worldwide. Extracellular polymeric substances (EPS) are natural organic polymers mainly produced by microorganisms, the major components of which are polysaccharides and proteins. This review focuses on the interactions that occur between EPS and MPs/NPs in the water environment and evaluates the effects of these interactions on the behaviors of MPs/NPs. EPS-driven formation of eco-corona, biofilm, and "marine snow" can incorporate MPs and NPs into sinking aggregates, resulting in the export of MPs/NPs from the upper water column. EPS coating greatly enhances the adsorption of metals and organic pollutants by MPs due to the larger specific surface area and the abundance of functional groups such as carboxyl, hydroxyl and amide groups. EPS can weaken the physical properties of MPs. Through the synergistic action of different extracellular enzymes, MPs may be decomposed into oligomers and monomers that can enter microbial cells for further mineralization. This review contributes to a comprehensive understanding of the dynamics of MPs and NPs in the water environment and the associated ecological risks.


Subject(s)
Plastics , Water Pollutants, Chemical , Microplastics , Extracellular Polymeric Substance Matrix/chemistry , Water Pollutants, Chemical/analysis , Polymers , Water
3.
Sci Total Environ ; 808: 152117, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34863747

ABSTRACT

Transparent exopolymer particles (TEPs) have drawn extensive attention in recent decades due to their crucial role in the biogeochemical and ecological processes of the ocean. However, TEP distribution and fluxes are relatively less addressed in the shelf-seas, where its variability can be affected by not only biology but also complex physical dynamics. Here, we present a comprehensive study of TEP from the coast to the basin (12 sampling sites) of the northern South China Sea (NSCS). We found a large TEP variability from 0.6 to 78.6 µg Xeq. L-1 with higher levels in the coastal waters than the offshore epipelagic waters and the deep waters. In addition, the spatial distribution of TEP was significantly correlated to the cross-shelf change of temperature, salinity, and chlorophyll-a, revealing the complex physical-biogeochemical controls on TEP variability. We found the TEP dynamics nearshore largely influenced by the sedimentation and transportation of TEP-rich aggregates from the river plume. The contribution of TEP to particulate organic carbon (POC) increased gradually when approaching the shore from the sea, suggesting an elevated role of TEP in the coastal carbon cycle. Finally, a good correlation of particle-attached bacteria (PAB) with TEP but not POC revealed a preferential utilization of TEP by PAB. Thus, TEP may play an essential role in the recycling of carbon and nitrogen in the shelf-sea. These findings are crucial for understanding of the TEP dynamics under a changing environment and the associated impacts on the oceanic carbon cycle.


Subject(s)
Carbon Cycle , Extracellular Polymeric Substance Matrix , Carbon , Chlorophyll A , Oceans and Seas
SELECTION OF CITATIONS
SEARCH DETAIL
...