Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 15(11): 5188-5192, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36861287

ABSTRACT

Here, we demonstrate a novel approach for fabricating non-close-packed gold nanocrystal arrays using facile one-step post-modification of a Cs4PbBr6-Au binary nanocrystal superlattice by electron beam etching of the perovskite phase. The proposed methodology can serve as a promising approach for the scalable preparation of a vast library of non-close-packed nanoparticulate superstructures with various morphologies composed of numerous colloidal nanocrystals.

2.
ACS Omega ; 8(7): 6884-6894, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36844533

ABSTRACT

Glutathione (GSH) protected gold nanoclusters (Au n SG m NCs) have been attractive because of their novel properties such as enhanced luminescence and band gap tunability at their quantum confinement region (below ∼2 nm). Initial synthetic routes of mixed-size clusters and size-based separation techniques had latter evolved toward atomically precise nanoclusters via thermodynamic and kinetic control routes. One such exemplary synthesis taking the advantages of a kinetically controlled approach is producing highly red-emissive Au18SG14 NCs (where SG = thiolate of glutathione), thanks to the slow reduction kinetics provided by the mild reducing agent NaBH3CN. Despite the developments in the direct synthesis of Au18SG14, several meticulous reaction conditions still need to be understood for the highly adaptable synthesis of atomically pure NCs irrespective of the laboratory conditions. Herein, we have systematically studied a series of reaction steps involved in this kinetically controlled approach starting from the role of the antisolvent, formation of precursors to Au-SG thiolates, growth of Au-SG thiolates as a function of aging time, and exploring an optimal reaction temperature to optimize the desired nucleation under slow reduction kinetics. The crucial parameters derived in our studies guide the successful and large-scale production of Au18SG14 at any laboratory condition. Next, we investigated the effect of pH on the NCs to study the stability and the best suitable condition for the phase transfer of Au18SG14 clusters. The commonly implemented method of phase transfer at the basic conditions (pH > 9) is not successful in this case. However, we developed a feasible method for the phase transfer by diluting the aqueous NC solution to enhance the negative charges on the NCs' surface by increasing the degree of dissociation at the carboxylic acid group. It is interesting to note that after the phase transfer, the Au18SG14-TOA NCs in toluene as well as in other organic solvents exhibited enhanced luminescence quantum yields from 9 to 3 times and increased average photoluminescence lifetimes by 1.5-2.5 times, respectively.

3.
Nanoscale ; 14(45): 16806-16815, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36300506

ABSTRACT

Growth kinetics involved in spontaneous random clustering of perovskite precursors to a particular cesium-lead-bromide (Cs-Pb-Br) nanocrystal (NC) is a poorly understood phenomenon and its spectroscopic investigation is highly challenging. There is scarcely any method that has been optimized yet in which perovskites and their related NCs of a particular size can be grown, viewed, or tuned to another by reaction handling. Here, for the first time, we shed light on the largely overlooked process of growth kinetics of these transformations throughout the reaction trajectory of anionic [PbBrx]n- crystallization dictated by Cs+ cation and report a simple and direct approach to control the metathesis reaction between two precursors (specifically Cs+- and PbBr2-associated oligomeric complexes) in one solvent at room temperature to monitor the NC growth characteristics in a stepwise manner even in the early stages of nucleation. Altering the molar ratio of the two precursors up to a factor of 10 leads to the formation of three prominent phases (CsPbBr3, Cs4PbBr6, CsBr) as dictated by Cs+ to trigger distinct morphological forms (nanobelts, nanoplatelets, rhombohedral NCs, pseudo-rhombic NCs, spherical CsBr NCs, cubic CsBr NCs) including a transient phase that is formed out of linearly self-assembled CsPbBr3 clusters. Our results pave the way towards understanding spontaneous crystallization to develop well-defined, hassle-free routes for diverse perovskite NCs in a simple yet controlled manner.

4.
Micromachines (Basel) ; 13(8)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36014240

ABSTRACT

Among perovskites, the research on cesium lead iodides (CsPbI3) has attracted a large research community, owing to their all-inorganic nature and promising solar cell performance. Typically, the CsPbI3 solar cell devices are prepared at various heterojunctions, and working at fluctuating temperatures raises questions on the material stability-related performance of such devices. The fundamental studies reveal that their poor stability is due to a lower side deviation from Goldschmidt's tolerance factor, causing weak chemical interactions within the crystal lattice. In the case of organic-inorganic hybrid perovskites, where their stability is related to the inherent chemical nature of the organic cations, which cannot be manipulated to improve the stability drastically whereas the stability of CsPbI3 is related to surface and lattice engineering. Thus, the challenges posed by CsPbI3 could be overcome by engineering the surface and inside the CsPbI3 crystal lattice. A few solutions have been proposed, including controlled crystal sizes, surface modifications, and lattice engineering. Various research groups have been working on these aspects and had accumulated a rich understanding of these materials. In this review, at first, we survey the fundamental aspects of CsPbI3 polymorphs structure, highlighting the superiority of CsPbI3 over other halide systems, stability, the factors (temperature, polarity, and size influence) leading to their phase transformations, and electronic band structure along with the important property of the defect tolerance nature. Fortunately, the factors stabilizing the most effective phases are achieved through a size reduction and the efficient surface passivation on the delicate CsPbI3 nanocrystal surfaces. In the following section, we have provided the up-to-date surface passivating methods to suppress the non-radiative process for near-unity photoluminescence quantum yield, while maintaining their optically active phases, especially through molecular links (ligands, polymers, zwitterions, polymers) and inorganic halides. We have also provided recent advances to the efficient synthetic protocols for optically active CsPbI3 NC phases to use readily for solar cell applications. The nanocrystal purification techniques are challenging and had a significant effect on the device performances. In part, we summarized the CsPbI3-related solar cell device performances with respect to the device fabrication methods. At the end, we provide a brief outlook on the view of surface and lattice engineering in CsPbI3 NCs for advancing the enhanced stability which is crucial for superior optical and light applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...