Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Parasitol ; 153(1-2): 24-43, 2008 May 06.
Article in English | MEDLINE | ID: mdl-18342449

ABSTRACT

We tested the hypothesis that brown-headed cowbirds (Molothrus ater) harbor Sarcocystis neurona, the agent of equine protozoal myeloencephalitis (EPM), and act as intermediate hosts for this parasite. In summer 1999, wild caught brown-headed cowbirds were collected and necropsied to determine infection rate with Sarcocystis spp. by macroscopic inspection. Seven of 381 (1.8%) birds had grossly visible sarcocysts in leg muscles with none in breast muscles. Histopathology revealed two classes of sarcocysts in leg muscles, thin-walled and thick-walled suggesting two species. Electron microscopy showed that thick-walled cysts had characteristics of S. falcatula and thin-walled cysts had characteristics of S. neurona. Thereafter, several experiments were conducted to confirm that cowbirds had viable S. neurona that could be transmitted to an intermediate host and cause disease. Specific-pathogen-free opossums fed cowbird leg muscle that was enriched for muscle either with or without visible sarcocysts all shed high numbers of sporocysts by 4 weeks after infection, while the control opossum fed cowbird breast muscle was negative. These sporocysts were apparently of two size classes, 11.4+/-0.7 microm by 7.6+/-0.4 microm (n=25) and 12.6+/-0.6 microm by 8.0+/-0 microm (n=25). When these sporocysts were excysted and introduced into equine dermal cell tissue culture, schizogony occurred, most merozoites survived and replicated long term and merozoites sampled from the cultures with long-term growth were indistinguishable from known S. neurona isolates. A cowbird Sarcocystis isolate, Michigan Cowbird 1 (MICB1), derived from thin-walled sarcocysts from cowbirds that was passaged in SPF opossums and tissue culture went on to produce neurological disease in IFNgamma knockout mice indistinguishable from that of the positive control inoculated with S. neurona. This, together with the knowledge that S. falcatula does not cause lesions in IFNgamma knockout mice, showed that cowbird leg muscles had a Sarcocystis that fulfills the first aim of Koch's postulates to produce disease similar to S. neurona. Two molecular assays provided further support that both S. neurona and S. falcatula were present in cowbird leg muscles. In a blinded study, PCR-RFLP of RAPD-derived DNA designed to discriminate between S. neurona and S. falcatula showed that fresh sporocysts from the opossum feeding trial had both Sarcocystis species. Visible, thick-walled sarcocysts from cowbird leg muscle were positive for S. falcatula but not S. neurona; thin-walled sarcocysts typed as S. neurona. In 1999, DNA was extracted from leg muscles of 100 wild caught cowbirds and subjected to a PCR targeting an S. neurona specific sequence of the small subunit ribosomal RNA (SSU rRNA) gene. In control spiking experiments, this assay detected DNA from 10 S. neurona merozoites in 0.5g of muscle. In the 1999 experiment, 23 of 79 (29.1%) individual cowbird leg muscle samples were positive by this S. neurona-specific PCR. Finally, in June of 2000, 265 cowbird leg muscle samples were tested by histopathology for the presence of thick- and thin-walled sarcocysts. Seven percent (18/265) had only thick-walled sarcocysts, 0.8% (2/265) had only thin-walled sarcocysts and 1.9% (5/265) had both. The other half of these leg muscles when tested by PCR-RFLP of RAPD-derived DNA and SSU rRNA PCR showed a good correlation with histopathological results and the two molecular typing methods concurred; 9.8% (26/265) of cowbirds had sarcocysts in muscle, 7.9% (21/265) had S. falcatula sarcocysts, 1.1% (3/265) had S. neurona sarcocysts, and 0.8% (2/265) had both. These results show that some cowbirds have S. neurona as well as S. falcatula in their leg muscles and can act as intermediate hosts for both parasites.


Subject(s)
Bird Diseases/parasitology , Sarcocystis/isolation & purification , Sarcocystosis/veterinary , Songbirds/parasitology , Animals , Horses , Host-Parasite Interactions , Interferon-gamma/genetics , Interferon-gamma/metabolism , Mice , Mice, Knockout , Muscle, Skeletal/parasitology , Opossums/parasitology , Phylogeny , Polymerase Chain Reaction/veterinary , Polymorphism, Restriction Fragment Length , Sarcocystis/genetics , Sarcocystosis/parasitology , Sensitivity and Specificity , Skin/cytology , Skin/parasitology , Specific Pathogen-Free Organisms
2.
J Biol Chem ; 272(16): 10895-903, 1997 Apr 18.
Article in English | MEDLINE | ID: mdl-9099746

ABSTRACT

The ubiquitin-activating enzyme exists as two isoforms: E1a, localized predominantly in the nucleus, and E1b, localized in the cytoplasm. Previously we generated hemagglutinin (HA) epitope-tagged cDNA constructs, HA1-E1 (epitope tag placed after the first methionine) and HA2-E1 (epitope tag placed after the second methionine) (Handley-Gearhart, P. M., Stephen, A. G., Trausch-Azar, J. S., Ciechanover, A., and Schwartz, A. L. (1994) J. Biol. Chem. 269, 33171-33178), which represent the native isoforms. HA1-E1 is exclusively nuclear, whereas HA2-E1 is found predominantly in the cytoplasm. Using high resolution isoelectric focusing and SDS-polyacrylamide gel electrophoresis, we confirm that these epitope-tagged constructs HA1-E1 and HA2-E1 represent the two isoforms E1a and E1b. HA1-E1/E1a exists as one non-phosphorylated and four phosphorylated forms, and HA2-E1/E1b exists as one predominant non-phosphorylated form and two minor phosphorylated forms. We demonstrate that the first 11 amino acids are essential for phosphorylation and exclusive nuclear localization of HA1-E1. Within this region are four serine residues and a putative nuclear localization sequence (NLS; 5PLSKKRR). Removal of these four serine residues reduced phosphorylation levels by 60% but had no effect on nuclear localization of HA1-E1. Each serine residue was independently mutated to an alanine and analyzed by two-dimensional electrophoresis; only serine 4 was phosphorylated. Disruption of the basic amino acids within the NLS resulted in loss of exclusive nuclear localization and a 90-95% decrease in the phosphorylation of HA1-E1. This putative NLS was able to confer nuclear import on a non-nuclear protein in digitonin-permeabilized cells in a temperature- and ATP-dependent manner. Thus the predominant requirement for efficient phosphorylation of HA1-E1/E1a is a functional NLS, suggesting that E1a may be phosphorylated within the nucleus.


Subject(s)
Cell Nucleus/enzymology , Ligases/chemistry , Ligases/metabolism , Amino Acid Sequence , Cytoplasm/enzymology , DNA, Complementary , Epitopes , HeLa Cells , Humans , Isoenzymes/chemistry , Isoenzymes/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Phosphates/metabolism , Phosphorylation , Point Mutation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Deletion , Sequence Tagged Sites , Serine , Transfection , Ubiquitin-Activating Enzymes , Ubiquitin-Protein Ligases
3.
Biochem J ; 304 ( Pt 3): 1015-20, 1994 Dec 15.
Article in English | MEDLINE | ID: mdl-7818464

ABSTRACT

The ubiquitin conjugation system is a multi-step pathway in which ubiquitin is activated and conjugated to acceptor proteins, one function of which is to target acceptor proteins for rapid degradation within the cell. The conjugation system is involved in many aspects of cellular functions, including the cell cycle. Several cell-cycle arrest mutant cell lines have been characterized and appear to harbour a mutant ubiquitin-activating enzyme, E1, as their primary defect. One such cell line is ts20, which is derived from Chinese hamster ovary E36 cells. This cell line has been used to characterize some of the potential functions of the ubiquitin conjugation system in vivo, such as its involvement in the maturation of autophagic vacuoles. The present study describes the complete rescue of the complex ts20 phenotype following the expression of the cDNA for human E1. Stable transfectants expressing the human E1 cDNA in the CMVneo expression vector were measured for ubiquitin-conjugation activity, protein degradation and growth in culture at the nonpermissive temperature. This rescue confirms that the phenotype observed in the ts20 cells is due to a defect in the E1 enzyme. Thus, the ts20 cell line will serve as a useful tool to delineate the functions of the ubiquitin system in vivo.


Subject(s)
CHO Cells/enzymology , CHO Cells/physiology , DNA, Complementary/genetics , Ligases/genetics , Animals , Cricetinae , Gene Expression , Humans , Phenotype , Sensitivity and Specificity , Temperature , Ubiquitin-Activating Enzymes , Ubiquitin-Protein Ligases , Ubiquitins/metabolism
4.
J Biol Chem ; 269(52): 33171-8, 1994 Dec 30.
Article in English | MEDLINE | ID: mdl-7528747

ABSTRACT

The ubiquitin-activating enzyme E1 catalyzes the first step in the ubiquitin conjugation pathway. Previously, we have cloned and sequenced the cDNA for human E1. Expression of the E1 cDNA in the ts20 cell line, which harbors a thermolabile E1, abrogated the phenotypic defects associated with this line. However, little is known of the cell biology of the E1 protein or the nature of the E1 doublet. Thus, we constructed epitope-tagged E1 cDNAs in which the HA monoclonal antibody epitope tag sequence (from influenza hemagglutinin and recognized by the 12CA5 monoclonal antibody) was fused to the amino terminus of E1. Because the amino-terminal amino acid sequence of E1 is unknown, three constructs were made in which the HA tag was placed at each of the first three ATGs in the open reading frame (HA-1E1, HA-2E1, and HA-3E1). Western analysis of HeLa cells transfected with the constructs revealed that HA-1E1 closely comigrated with the upper band of the E1 doublet, and HA-2E1 comigrated with the lower band of the E1 doublet; HA-3E1 appeared smaller than either of the E1 bands. Metabolic labeling with 32P and immunoprecipitation with anti-HA antibody revealed that only the HA-1E1 protein product is phosphorylated; polyclonal anti-E1 antibody showed that only the upper band of the endogenous E1 doublet is phosphorylated. Each of the constructs was able to rescue the mutant phenotype of the ts20 cell line. Immunofluorescence studies showed that HA-2E1 and HA-3E1 were distributed in the cytoplasm with both negative and positive nuclei. This pattern of distribution has also been observed when immunostaining with a monoclonal antibody to E1 (1C5). However, the staining pattern associated with a polyclonal anti-E1 antibody (JJJ) is characterized by positive staining cytoplasm and nuclei in all cells. The HA-1E1 construct exhibited apparently exclusive nuclear distribution in HeLa cells. The difference between the staining patterns of the polyclonal and monoclonal anti-E1 antibodies can be explained by the existence of two subpopulations of E1: one cytoplasmic and partially nuclear, and one that is nuclear. Deletion of a small region at the amino terminus of the HA-1E1, including the basic sequence KKRR, transformed its immunostaining pattern to that observed with HA-2E1.


Subject(s)
Cell Nucleus/enzymology , Cytoplasm/enzymology , Ligases/analysis , Amino Acid Sequence , DNA, Complementary , Epitopes/chemistry , Fluorescent Antibody Technique , HeLa Cells , Humans , Ligases/immunology , Molecular Sequence Data , Mutation , Phenotype , Transfection , Ubiquitin-Activating Enzymes , Ubiquitin-Protein Ligases
5.
Biochem J ; 300 ( Pt 3): 701-8, 1994 Jun 15.
Article in English | MEDLINE | ID: mdl-8010951

ABSTRACT

The mechanisms that regulate ubiquitin-mediated degradation of proteins such as the mitotic cyclins at defined stages of the cell cycle are poorly understood. The initial step in the conjugation of ubiquitin to substrate proteins involves the activation of ubiquitin by the ubiquitin-activating enzyme, E1. Previously we have described the subcellular localization of this enzyme to both nuclear and cytoplasmic compartments. In the present study, we have used the 1C5 anti-E1 monoclonal antibody in immunofluorescent-microscopy and subcellular-fractionation techniques to examine the distribution of E1 during the HeLa cell cycle. E1 is both cytoskeletal and nuclear during the G1-phase. As the cells progress into S-phase, E1 is exclusively cytoskeletal and has a perinuclear distribution. During G2-phase, E1 reappears in the nucleus before breakdown of the nuclear envelope. In mitotic cells, E1 localizes to both the mitotic spindle and the cytosol, but is absent from the chromosomes. Immunoblot analysis reveals multiple forms of E1 in HeLa whole cell extract. This heterogeneity is not a result of polyubiquitination and may represent inactive pools of E1. Only the characteristic E1 doublet is able to activate ubiquitin. Cell-fractionation studies reveal a differential distribution of specific E1 isoforms throughout the cell cycle. Therefore we propose that the subcellular localization of E1 may play a role in regulating cell-cycle-dependent conjugation of ubiquitin to target proteins.


Subject(s)
Cell Cycle , Ligases/metabolism , Nuclear Proteins/metabolism , Ubiquitins/metabolism , Antibodies, Monoclonal , Cell Compartmentation , Cell Nucleus/enzymology , Fluorescent Antibody Technique , HeLa Cells , Humans , Mitosis , Ubiquitin-Activating Enzymes , Ubiquitin-Protein Ligases
6.
Am J Physiol ; 264(1 Pt 1): C93-102, 1993 Jan.
Article in English | MEDLINE | ID: mdl-8430776

ABSTRACT

Ubiquitin, a 76-amino acid protein, is covalently attached to abnormal and short-lived proteins, thus marking them for ATP-dependent proteolysis in eukaryotic cells. Ubiquitin is found within the cytoplasm, nucleus, microvilli, autophagic vacuoles, and lysosomes. The ubiquitin-activating enzyme, E1, catalyzes the first step in ubiquitin conjugation. To date, very little is known about the subcellular distribution of this enzyme. We have utilized immunofluorescence and immunoblotting to examine the cellular distribution of E1 in several eukaryotic cell lines, including HeLa, smooth muscle A7r5, choriocarcinoma BeWo, Pt K1, and Chinese hamster ovary (CHO) E36. E1 was identified in both cytoplasmic and nuclear compartments in all cell lines examined. However, the relative abundance within these compartments differed markedly between the cell lines. Even within a single cell line, nuclear distribution was not uniform, and certain cells demonstrated an absence of nuclear staining. E1 resides predominantly within the nucleus in BeWo. In contrast, its distribution in CHO and Pt K1 cells is mainly cytoplasmic. Within the cytoplasm, three pools of E1 were identified by double-label immunofluorescence. The first of these colocalized with phalloidin, indicating association of E1 with actin filaments. A second cytoplasmic pool colocalized with tubulin and was predominantly perinuclear in its distribution. The third pool associated with intermediate filaments. This suggests that E1 is associated with all three components of the cytoskeleton. The distribution of E1 was unaltered in a mutant line of CHO E36 designated ts20, in which the E1 can be thermally inactivated. The variable distribution of E1 among cell lines, including its apparent cytoskeletal association, suggests pleiotropic functions of this enzyme and the ubiquitin-conjugating system.


Subject(s)
Cell Nucleus/metabolism , Cytoskeleton/metabolism , Ligases/metabolism , Animals , Antibodies, Monoclonal , Cell Line , Fluorescent Antibody Technique , Humans , Microscopy, Fluorescence , Tissue Distribution , Ubiquitin-Activating Enzymes , Ubiquitin-Protein Ligases
SELECTION OF CITATIONS
SEARCH DETAIL
...