Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 92(5): 4053-4064, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32045217

ABSTRACT

Surface-enhanced Raman scattering (SERS) is a powerful and sensitive technique for the detection of fingerprint signals of molecules and for the investigation of a series of surface chemical reactions. Many studies introduced quantitative applications of SERS in various fields, and several SERS methods have been implemented for each specific application, ranging in performance characteristics, analytes used, instruments, and analytical matrices. In general, very few methods have been validated according to international guidelines. As a consequence, the application of SERS in highly regulated environments is still considered risky, and the perception of a poorly reproducible and insufficiently robust analytical technique has persistently retarded its routine implementation. Collaborative trials are a type of interlaboratory study (ILS) frequently performed to ascertain the quality of a single analytical method. The idea of an ILS of quantification with SERS arose within the framework of Working Group 1 (WG1) of the EU COST Action BM1401 Raman4Clinics in an effort to overcome the problematic perception of quantitative SERS methods. Here, we report the first interlaboratory SERS study ever conducted, involving 15 laboratories and 44 researchers. In this study, we tried to define a methodology to assess the reproducibility and trueness of a quantitative SERS method and to compare different methods. In our opinion, this is a first important step toward a "standardization" process of SERS protocols, not proposed by a single laboratory but by a larger community.

2.
Beilstein J Nanotechnol ; 10: 725-734, 2019.
Article in English | MEDLINE | ID: mdl-30931214

ABSTRACT

The paper reports on the features and advantages of horizontally oriented flexible silicon nanowires (SiNWs) substrates for surface-enhanced Raman spectroscopy (SERS) applications. The novel SERS substrates are described in detail considering three main aspects. First, the key synthesis parameters for the flexible nanostructure SERS substrates were optimized. It is shown that fabrication temperature and metal-plating duration significantly influence the flexibility of the SiNWs and, consequently, determine the SERS enhancement. Second, it is demonstrated how the immersion in a liquid followed by drying results in the formation of SiNWs bundles influencing the surface morphology. The morphology changes were described by fractal dimension and lacunar analyses and correlated with the duration of Ag plating and SERS measurements. SERS examination showed the optimal intensity values for SiNWs thickness values of 60-100 nm. That is, when the flexibility of the self-assembly SiNWs allowed hot spots occurrence. Finally, the test with 4-mercaptophenylboronic acid showed excellent SERS performance of the flexible, horizontally oriented SiNWs in comparison with several other commercially available substrates.

3.
Sensors (Basel) ; 19(1)2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30609660

ABSTRACT

Porous silicon has been intensely studied for the past several decades and its applications were found in photovoltaics, biomedicine, and sensors. An important aspect for sensing devices is their long⁻term stability. One of the more prominent changes that occur with porous silicon as it is exposed to atmosphere is oxidation. In this work we study the influence of oxidation on the sensing properties of porous silicon. Porous silicon layers were prepared by electrochemical etching and oxidized in a tube furnace. We observed that electrical resistance of oxidized samples rises in response to the increasing ambient concentration of organic vapours and ammonia gas. Furthermore, we note the sensitivity is dependent on the oxygen treatment of the porous layer. This indicates that porous silicon has a potential use in sensing of organic vapours and ammonia gas when covered with an oxide layer.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 200: 102-109, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29677496

ABSTRACT

Modern diagnostic tools ever aim to reduce the amount of analyte and the time needed for obtaining the result. Surface-enhanced Raman spectroscopy is a method that could satisfy both of these requirements, provided that for each analyte an adequate substrate is found. Here we demonstrate the ability of gold-sputtered silicon nanowires (SiNW) to bind p-mercaptobenzoic acid in 10-3, 10-4 and 10-5M and adenine in 30 and 100µM concentrations. Based on the normal mode analysis, presented here for the first time, the binding of p-mercaptobenzoic acid is deduced. The intensity enhancement of the 1106cm-1 band is explained by involvement of the CS stretching deformation, and the appearance of the broad 300cm-1 band attributed to SAu stretching mode. Adenine SERS spectra demonstrate the existence of the 7H tautomer since the strongest band observed is at 736cm-1. The adenine binding is likely to occur in several ways, because the number of observed bands in the 1200-1600cm-1 interval exceeds the number of observed bands in the normal Raman spectrum of the free molecule.

5.
Opt Lett ; 38(2): 196-8, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23454960

ABSTRACT

In this work, the influence of photodarkening (PD) and photobleaching (PB) on the lasing features of the ytterbium-doped aluminosilicate fiber lasers is examined. Simultaneous PD and PB with 633 nm irradiation was monitored at the lasing wavelength of 1070 nm and compared with individually caused PD and PB effects. The variation of laser threshold and slope efficiency was reported. By analyzing the laser performances it was found that the ratio of excess loss at 633 and 1070 nm is expected to be less than 20. In addition, considerable mitigation of the PD with 633 nm light irradiation is demonstrated.

6.
Opt Express ; 19(20): 19340-5, 2011 Sep 26.
Article in English | MEDLINE | ID: mdl-21996874

ABSTRACT

We report on an extensive investigation of photodarkening in Yb-doped silica fibers. A set of similar fibers, covering a large Yb concentration range, was made so as to compare the photodarkening induced losses. Careful measurements were made to ensure equal and uniform inversion for all the tested fibers. The results show that, with the specific set-up, the stretching parameter obtained through fitting has a very limited variation. This gives more meaning to the fitting parameters. Results tend to indicate a square law dependence of the concentration of excited ions on the final saturated loss. We also demonstrate self-similarity of loss evolution when experimental curves are simply normalized to fitting parameters. This evidence of self-similarity also supports the possibility of introducing a preliminary figure of merit for Yb-doped fiber. This will allow the impact of photodarkening on laser/amplifier devices to be evaluated.


Subject(s)
Amplifiers, Electronic , Infrared Rays , Optics and Photonics/instrumentation , Ytterbium/chemistry , Equipment Design , Fluorescence
7.
Opt Express ; 19(25): 25077-83, 2011 Dec 05.
Article in English | MEDLINE | ID: mdl-22273899

ABSTRACT

The present work describes photodarkening from the viewpoint of cooperative luminescence. The temporal evolution of both effects was measured simultaneously by means of ytterbium doped aluminosilicate fibers for concentrations up to 1.8 wt% Yb3+. The quadratic dependence of photodarkening and cooperative luminescence versus dopant concentration was observed. The change in the photodarkening and cooperative luminescence mutual dynamics for highly and low doped fibers is ascribed to a different ion number which forms the cluster. Cooperative luminescence is proved to be a natural probe for photodarkening since it provides new pieces of information and contributes to the photodarkening mechanism description.


Subject(s)
Fiber Optic Technology/methods , Luminescent Measurements/methods , Silicon Dioxide/chemistry , Ytterbium/chemistry , Absorption , Luminescence , Statistics as Topic
8.
Opt Express ; 19(27): 26269-74, 2011 Dec 19.
Article in English | MEDLINE | ID: mdl-22274211

ABSTRACT

In this paper we calculated, for the first time to the best of our knowledge, the cross relaxation parameter of Tm(3+) ions in tellurite glasses over a wide range of concentrations: from 0.36 mol% up to 10 mol%. A new measurement approach based on emission spectra monitoring is proposed. This method is very simple and allows to measure even very highly doped samples. The obtained values of cross-relaxation parameter show a linear dependence with respect to dopant concentration over the full investigated interval, suggesting a dipole-dipole interaction process. The measured slope is 1.81x10(-17) cm(3) s(-1) mol%(-1).


Subject(s)
Glass/chemistry , Models, Chemical , Refractometry/methods , Tellurium/chemistry , Thulium/chemistry , Computer Simulation , Energy Transfer , Light , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...