Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Biology (Basel) ; 12(11)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37998035

ABSTRACT

Ewes undergo complex metabolic changes during pregnancy. Understanding the specific process of these changes is a necessary prerequisite in ewes for regulating and intervening in order to maintain pregnancies. However, there have been relatively few studies on the specific changes that occur in nutritional metabolism in pregnant ewes during early gestation, especially for some landrace ewes in highly cold areas. Therefore, this study aimed to (1) elucidate the changes in metabolites and microbial communities in pregnant ewes during early gestation using metabolomics and 16S ribosomal RNA gene (rDNA) amplicon sequencing approaches, and to (2) discover novel early pregnancy-induced biomarkers in the blood and faeces. Rams were placed together with ewes on D0 and removed on D45. During early gestation, blood and faecal samples were collected from ewes in a highly cold area for analysing the metabolites and microbial communities; these were retrospectively classified as the early gestation pregnant (EP) ewe group or the nonpregnant (NP) ewe group based on the lambing status recorded during the expected delivery period. The differences in the plasma biochemical parameters, plasma metabolites, and faecal microbial communities of pregnant and nonpregnant ewes were characterised. The GC, IL-6, O-acetyl-l-serine, L-glutamine, and 6-acetamido-2-oxohexanoic acid were screened out as potential biomarkers for evaluating the occurrence of early pregnancy. These novel early pregnancy-induced metabolites discovered in ewes might allow for the development of technologies to detect early pregnancies in sheep in highly cold areas.

2.
BMC Genomics ; 24(1): 364, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37386405

ABSTRACT

BACKGROUND: The liver is a principal metabolic organ and has a major role in regulating lipid metabolism. With the development of rapidly fattening livestock in the modern breeding industry, the incidence of hepatic steatosis and accumulation in animals was significantly increased. However, the molecular mechanisms responsible for hepatic lipid metabolic disturbances in a high concentrate diet remain unclear. The objective of this study was to evaluate the effects of increasing concentrate level in a fattening lamb diet on biochemical indices, hepatic triglycerides (TG) concentration, and hepatic transcriptomic profiles. In the present study, 42 weaned lambs (about 3 ± 0.3 months old) were randomly assigned to the GN60 group (60% concentrate of dry matter, GN60, n = 21) or GN70 group (70% concentrate of dry matter, n = 21) for a 3-months feeding trial. RESULTS: No difference was observed in the growth performance or plasma biochemical parameters between the GN60 group and the GN70 group. The hepatic TG concentration was higher in the GN70 group than GN60 group (P < 0.05). Hepatic transcriptomic analysis showed that there were 290 differentially expressed genes identified between GN60 and GN70 groups, with 125 genes up-regulated and 165 genes down-regulated in the GN70 group. The enriched Gene Ontology (GO) items and KEGG pathways and protein-protein interaction (PPI) network of differentially expressed genes (DEGs) revealed that the majority of enriched pathways were related to lipid metabolism. Further analysis revealed that the fatty acid synthesis was up-regulated, while fatty acid transport, oxidation, and TG degradation were down-regulated in the GN70 group when compared with the GN60 group. CONCLUSIONS: These results indicated that GN70 induced excess lipid deposition in the liver of lambs during the fattening period, with high synthesis rates and low degradation rates of TG. The identified mechanisms may help understand hepatic metabolism in lambs with a high concentrate diet and provide insight into decreasing the risk of liver metabolism disorder in animals.


Subject(s)
Lipid Metabolism Disorders , Lipid Metabolism , Animals , Diet/veterinary , Edible Grain , Fatty Acids , Gene Expression Profiling , Lipid Metabolism/genetics , Lipids , Liver , Plant Breeding , Sheep , Sheep, Domestic
3.
Front Microbiol ; 14: 1093129, 2023.
Article in English | MEDLINE | ID: mdl-36937266

ABSTRACT

Silybum marianum meal is a by-product that remains silymarin complex and is perceived as a potential-protein source. The potential and its mechanism of silybum marianum meal as a protein supplement in ruminants were evaluated by testing the growth performance, biochemical parameters, cytokine levels, gut transcriptome and microbial community profiles. Forty-two male Hulunbeier growing lambs (aged about 3-month-old; averaged body weight of 21.55 kg) were randomly divided into the CON (with 10% soybean meal) and SIL groups (with 10% silybum marianum meal). There was no significant difference in growth performance, feed intakes, or serum biochemical parameters between CON and SIL. The serum levels of IL-1ß, TNF-α, TGF-ß, HGF, and VEGF were all increased (p < 0.05) in the SIL group as compared with the CON group. Transcriptome gene set enrichment analysis (GSEA) revealed that the core genes in the rumen from SIL group were enriched with fructose and mannose metabolism, while the core genes in the ileum were enriched for three biological process, including digestive tract development, positive regulation of MAPK cascade, and regulation of I-kappaB kinase/NF-kappaB signaling. The 16S rDNA results showed that the relative abundance of Bacteroidetes, Firmicutes, Synergistetes, and Verrucomicrobia in the rumen from SIL group was significantly higher than that in CON group (p < 0.05), whereas Proteobacteria was significantly lower than that in CON group (p < 0.05). The LEfSe analysis showed that the genera Pyramidobacter, Saccharofermentans, Anaerovibrio, Oscillibacter and Barnesiella were enriched in the rumen from SIL group, whereas Sharpea was enriched in the CON group (LDA > 2). In the ileum, there were no significant differences in the phylum-level classification of microbes observed. At the genus level, the relative abundances of Bifidobacterium and Ruminococcus in the ileum from SIL group were significantly higher than that in the CON group (p < 0.05), whereas the relative abundance of Clostridium_XI was lower (p < 0.05). Correlation analysis showed that Clostridium_XI was negatively correlated with VEGF, TGF-ß, TNF-α and HGF (p < 0.05). Core genes BMP4 and CD4 were negatively correlated with Clostridium_XI (p < 0.05). Our results indicated that supplementing silybum marianum meal as a replacement for soybean meal resulted in increased cytokines production without affecting growth performance in growing lambs, and the enrichment of immune-related genes and altered microbial community in the ileum were contributed to the increased immune responses.

4.
Front Microbiol ; 14: 1309520, 2023.
Article in English | MEDLINE | ID: mdl-38179443

ABSTRACT

Weaning goats are susceptible to diarrhea and have weakened immune functions due to physiological, dietary and environmental stresses. Astragalus membranaceus (A. membranaceus), a traditional Chinese medicinal herb, has been shown to improve growth performance and immunity in weaned ruminants. However, the influence mechanism of A. membranaceus on intestinal microbiota and mucosal immunity in weaned goats is still unknown. This study investigated the effects of ultra-grinded A. membranaceus (UGAM) on the immune function and microbial community in the ileum of weaned goats. Eighteen healthy weaned Xiangdong black goats (BW, 5.30 ± 1.388 kg) were used in a study of completely randomized block design with 28 days long. The animals were randomly assigned to either a basal diet supplemented with 10 g/d of milk replacer (CON, n = 9) or the CON diet supplemented with 10 g/head UGAM (UGAM, n = 9). Supplementation of UGAM increased (p < 0.05) the plasma concentrations of total protein and albumin. Meanwhile, the addition of UGAM reduced (p < 0.05) the relative mRNA expression of the IL-6 gene (a marker of inflammation), indicating the potential immunomodulatory effect of UGAM. Moreover, the relative abundances of Verrucomicrobiota and Mycoplasma were lower (p < 0.05) in the ileum of goats supplemented with UGAM than CON. These findings suggest that dietary supplementation of UGAM may have enhanced the ileum health of weaned goats by reducing inflammation factor expression and reducing the relative abundance of pathogenic microbes. The observed beneficial effects of ultra-grinded A. membranaceus on ileal mucosal immune and the community of ileal microbiota indicate its potential to be used as a viable option for promoting the well-being of weaned goats under weaning stress.

6.
J Anim Sci Biotechnol ; 13(1): 85, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35821163

ABSTRACT

BACKGROUND: Methionine or lysine has been reported to influence DNA methylation and fat metabolism, but their combined effects in N6-methyl-adenosine (m6A) RNA methylation remain unclarified. The combined effects of rumen-protected methionine and lysine (RML) in a low-protein (LP) diet on lipid metabolism, m6A RNA methylation, and fatty acid (FA) profiles in the liver and muscle of lambs were investigated. Sixty-three male lambs were divided into three treatment groups, three pens per group and seven lambs per pen. The lambs were fed a 14.5% crude protein (CP) diet (adequate protein [NP]), 12.5% CP diet (LP), and a LP diet plus RML (LP + RML) for 60 d. RESULTS: The results showed that the addition of RML in a LP diet tended to lower the concentrations of plasma leptin (P = 0.07), triglyceride (P = 0.05), and non-esterified FA (P = 0.08). Feeding a LP diet increased the enzyme activity or mRNA expression of lipogenic enzymes and decreased lipolytic enzymes compared with the NP diet. This effect was reversed by supplementation of RML with a LP diet. The inclusion of RML in a LP diet affected the polyunsaturated fatty acids (PUFA), n-3 PUFA, and n-6 PUFA in the liver but not in the muscle, which might be linked with altered expression of FA desaturase-1 (FADS1) and acetyl-CoA carboxylase (ACC). A LP diet supplemented with RML increased (P < 0.05) total m6A levels in the liver and muscle and were accompanied by decreased expression of fat mass and obesity-associated protein (FTO) and alkB homologue 5 (ALKBH5). The mRNA expressions of methyltransferase-like 3 (METTL3) and methyltransferase-like 14 (METTL14) in the LP + RML diet group were lower than those in the other two groups. Supplementation of RML with a LP diet affected only liver YTH domain family (YTHDF2) proteins (P < 0.05) and muscle YTHDF3 (P = 0.09), which can be explained by limited m6A-binding proteins that were mediated in mRNA fate. CONCLUSIONS: Our findings showed that the inclusion of RML in a LP diet could alter fat deposition through modulations of lipogenesis and lipolysis in the liver and muscle. These changes in fat metabolism may be associated with the modification of m6A RNA methylation. A systematic graph illustrates the mechanism of dietary methionine and lysine influence on lipid metabolism and M6A. The green arrow with triangular heads indicates as activation and brown-wine arrows with flat heads indicates as suppression.

7.
Animals (Basel) ; 12(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35681874

ABSTRACT

Metal transporters, including divalent metal-ion transporter-1 (DMT1), Zrt-/Irt-like protein 8 and 14 (ZIP8 and ZIP14), and ferroportin-1 (FPN1), reportedly participate in cellular cadmium (Cd) uptake, but those in farm animals remain unclarified. This study aimed to examine the growth, plasma biochemical indices, Cd accumulation, and expression of metal transporter genes in the liver, kidney, and muscle of goats exposed to rice paddies contaminated with different levels of Cd. Twenty-four goats were randomly assigned across three dietary treatments: 0.23, 0.63, and 1.07 mg of Cd/kg of dry matter (DM) for 60 days. The results showed that dietary Cd exposure increased (p < 0.05) both Cd accumulation and the mRNA expressions of metal transporter genes (DMT1, ZIP, and FPN1) in the liver and kidney but not in the muscle, suggesting dietary Cd exhibited different deposition rates between goat liver, kidney, and muscle. These outcomes suggest that high levels of dietary Cd stimulated the expression of metal transporter genes and thereby enhanced the uptake and accumulation of Cd in the goat liver and kidney. As such, higher Cd concentrations in the liver and kidney observed with Cd diets could be partly explained by upregulation of metal transport genes expression.

8.
Front Vet Sci ; 9: 1098651, 2022.
Article in English | MEDLINE | ID: mdl-36713857

ABSTRACT

Introduction: Abrupt weaning is a major stressful event, contributing to intestinal abnormalities and immune system dysfunction in weaned kids. Inulin is a prebiotic fiber with many positive functions, including promoting intestinal fermentation and enhancing host immunity in monogastric animals. However, the effects of a high-inulin, energy-rich diet on ruminal fermentation characteristics, methane emission, growth performance, and immune systems of weaned kids have not been investigated. Methods: A fully automated in vitro fermentation system was used to investigate ruminal fermentation characteristics and methane emission of a mixed substrate of inulin and fat powder (1.31: 1) in comparison with maize grain-based starter concentrate. During a 1-week adaptation and 4-week trial phase, 18 weaned kids (8.97 ± 0.19 kg) were randomly assigned to two groups, one with a conventional diet (83% maize grain; CON) and the other with a low-carbon, high-inulin diet (41.5% maize grain, 14.4% fat powder, 18.9% inulin; INU). Results: In the in vitro rumen fermentation experiment, the total gas production was not different (p > 0.05); however, a lower (p < 0.05) methane production was observed for INU as compared to CON. The average daily gain and the ratio of feed intake and growth performance of kids fed with INU were higher (p < 0.05) than those fed with CON. Serum concentrations of alanine transaminase (ALT) and lactate dehydrogenase (LDH) were lower (p < 0.05), whereas the concentration of high-density lipoprotein (HDL) and cholesterol (CHOL) were higher (p < 0.05) in kids fed with the INU diet as compared CON. Dietary inulin significantly increased (p < 0.05) the secretion of immunoglobulins (IgA, IgG, and IgM) and inflammatory cytokines (IFN-γ and IL-10) in ileum tissue. Although no differences (p > 0.05) were observed in mRNA expression of tight junction markers, the INU diet tended to increase (p = 0.09) gene expression of ribosomal protein S6 kinase beta-1 (P70S6K) in the mammalian target of rapamycin (mTOR) pathway of longissimus dorsi muscle. Conclusion: Our findings highlighted that a low-carbon high-inulin energy-rich diet could be used as a promising strategy to improve gut immunity and growth performance of weaned kids under abrupt weaning stress and reduce methane production.

9.
Front Nutr ; 8: 783819, 2021.
Article in English | MEDLINE | ID: mdl-34912840

ABSTRACT

Marine algae polysaccharides have been shown to regulate various biological activities, such as immune modulation, antioxidant, antidiabetic, and hypolipidemic. However, litter is known about the interaction of these polysaccharides with the gut microbiota. This study aimed to evaluate the effects of marine algae Enteromorpha (Ulva) prolifera polysaccharide (EP) supplementation on growth performance, immune response, and caecal microbiota of broiler chickens. A total of 200 1-day-old Ross-308 broiler chickens were randomly divided into two treatment groups with ten replications of ten chickens in each replication. The dietary treatments consisted of the control group (fed basal diet), and EP group (received diet supplemented with 400 mg EP/kg diet). Results showed that chickens fed EP exhibited significantly higher (P < 0.05) body weight and average daily gain than the chicken-fed basal diet. In addition, significantly longer villus height, shorter crypt depth, and higher villus height to crypt depth ratio were observed in the jejunal and ileal tissues of chickens fed EP. EP supplementation upregulated the mRNA expression of NF-κB, TLR4, MyD88, IL-2, IFN-α, and IL-1ß in the ileal and jejunal tissues (P < 0.05). Besides, we observed significantly higher (P < 0.05) short-chain volatile fatty acids (SCFAs) levels in the caecal contents of the EP group than in the control group. Furthermore, 16S-rRNA analysis revealed that EP supplementation altered gut microbiota and caused an abundance shift at the phylum and genus level in broiler chicken. Interestingly, we observed an association between microbiota and SCFAs production. Overall, this study demonstrated that supplementation of diet with EP promotes growth performance, improves intestinal immune response and integrity, and modulates the caecal microbiota of broiler chickens. This study highlighted the application of marine algae polysaccharides as an antibiotic alternative for chickens. Furthermore, it provides insight to develop marine algae polysaccharide-based functional food and therapeutic agent.

10.
Front Nutr ; 8: 774766, 2021.
Article in English | MEDLINE | ID: mdl-34957184

ABSTRACT

Increasing the ratio of amylose in the diet can increase the quantity of starch that flows to the large intestine for microbial fermentation. This leads to the alteration of microbiota and metabolite of the hindgut, where the underlying mechanism is not clearly understood. The present study used a combination of 16S amplicon sequencing technology and metabolomics technique to reveal the effects of increasing ratios of amylose/amylopectin on cecal mucosa- and digesta-associated microbiota and their metabolites in young goats. Twenty-seven Xiangdong black female goats with average body weights (9.00 ± 1.12 kg) were used in this study. The goats were randomly allocated to one of the three diets containing starch with 0% amylose corn (T1), 50% high amylose corn (T2), and 100% high amylose corn (T3) for 35 days. Results showed that cecal valerate concentration was higher (P < 0.05) in the T2 group than those in the T1 and T3 groups. The levels of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 were decreased (P < 0.05) in cecal tissue while IL-10 was increased (P < 0.05) in the T2 group when compared with T1 or T3 groups. At the phylum level, the proportion of mucosa-associated Spirochaetes was increased (P < 0.05), while Proteobacteria was deceased by feeding high amylose ratios (P < 0.05). The abundance of Verrucomicrobia was decreased (P < 0.05) in the T3 group compared with the T1 and T2 groups. The abundance of digesta-associated Firmicutes was increased (P < 0.05) while Verrucomicrobia and Tenericutes were deceased (P < 0.05) with the increment of amylose/amylopectin ratios. The LEfSe analysis showed that a diet with 50% high amylose enriched the abundance of beneficial bacteria such as Faecalibacterium and Lactobacillus in the digesta and Akkermansia in the mucosa compared with the T1 diet. The metabolomics results revealed that feeding a diet containing 50% high amylose decreased the concentration of fatty acyls-related metabolites, including dodecanedioic acid, heptadecanoic acid, and stearidonic acid ethyl ester compared with the T1 diet. The results suggested that a diet consisting of 50% high amylose could maintain a better cecal microbiota composition and host immune function.

11.
Appl Microbiol Biotechnol ; 105(21-22): 8393-8410, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34617138

ABSTRACT

Feeding low-protein (LP) diets with essential amino acids could be an effective strategy for ruminants from economic, health and environmental perspectives. This study was conducted to investigate the effects of rumen-protected methionine and lysine (RML) in the LP diet on growth performance, innate immunity, and gut health of growing lambs. After 15 days of adaption, sixty-three male Hulunbuir lambs aged approximately 4 months were allotted to three dietary groups and each group had three pens with seven lambs for 60 days. The dietary treatments were as follows: a normal protein diet (14.5% CP, positive control; NP), LP diet (12.5% CP, negative control; LP), and LP diet with RML (12.5% CP, LP + RML). Lambs fed with LP + RML diet showed improved villus architecture and gut barrier function than those fed with the other two diets. The mRNA expressions of interleukin-1ß, tumor necrosis factor-α, interferon-γ, toll-like receptor-4, and myeloid differentiation primary response 88 were downregulated in most regions of the intestinal segments by feeding the LP + RML diet. Compared with the NP diet, feeding lambs with the LP diet increased the abundance of Candidatus_Saccharimonas in all regions of the intestinal tract and reversed by feeding the LP + RML diet. Lambs in the LP + RML diet group had lower abundance of Erysipelotrichaceae_UCG-009 and Clostridium_sensu_stricto_1 than those in the LP diet group. The results showed that supplementing RML in the LP diet exhibited beneficial effects on host immune function, intestinal mucosal integrity, and microbiota composition. KEY POINTS: • Adding methionine and lysine in a low-protein diet improve the intestinal mucosal growth and integrity. • Feeding a low-protein diet with methionine and lysine enhance the innate immune status. • Adding methionine and lysine in a low-protein diet alter the intestinal microbiota composition.


Subject(s)
Diet, Protein-Restricted , Gastrointestinal Microbiome , Animal Feed/analysis , Animals , Lysine , Male , Methionine , Sheep
12.
PeerJ ; 9: e10593, 2021.
Article in English | MEDLINE | ID: mdl-33575124

ABSTRACT

BACKGROUND: Maternal nutrient restriction during pregnancy causes a metabolic disorder that threatens the offspring's health in humans and animals. However, the molecular mechanism of how undernutrition affecting hepatic metabolism of fetal or postnatal offspring is still unclear. We aimed to investigate transcriptomic changes of fetal livers in response to maternal malnutrition in goats during mid-gestation and to explore whether these changes would disappear when the nutrition was recovered to normal level during mid-gestation using goats (Capra hircus) as the experimental animals. METHODS: Fifty-three pregnant goats were subjected to a control (100% of the maintenance requirements, CON) or a restricted (60% of the maintenance requirements on day 45 to day 100 of gestation and then realimentation, RES) diet. A total of 16 liver samples were collected from fetal goats on day 100 of gestation and goat kids of postnatal day 90 to obtain hepatic transcriptional profiles using RNA-Seq. RESULTS: Principal component analysis of the hepatic transcriptomes presented a clear separation by growth phase (fetus and kid) rather than treatment. Maternal undernutrition up-regulated 86 genes and down-regulated 76 genes in the fetal liver of the FR group as compared to the FC group. KEGG pathway analysis showed the DEGs mainly enriched in protein digestion and absorption, steroid biosynthesis, carbohydrate digestion and absorption and bile secretion. A total of 118 significant DEGs (fold change > 1.2 and FDR < 0.1) within KR vs. KC comparison was identified with 79 up-regulated genes and down-regulated 39 genes, and these DEGs mainly enriched in the biosynthesis of amino acids, citrate cycle, valine, leucine and isoleucine biosynthesis and carbon metabolism. CONCLUSION: Hepatic transcriptome analysis showed that maternal undernutrition promoted protein digestion and absorption in the fetal livers, while which restrained carbohydrate metabolism and citric acid cycle in the livers of kid goats after realimentation. The results indicate that maternal undernutrition during mid-gestation causes hepatic metabolism programming in kid goats on a molecular level.

13.
Front Microbiol ; 12: 795081, 2021.
Article in English | MEDLINE | ID: mdl-35058910

ABSTRACT

Successful establishment of passive immunity (PIT) and regulation of intestinal microbiota are crucial for ruminants to maintain body health and reduce the risk of disease during the neonatal period. Thus, the objective of this study was to investigate the effects of mannan oligosaccharide (MOS) supplementation on passive transfer of immunoglobulin G (IgG), serum inflammatory cytokines and antioxidant levels as well as bacteria composition in the ileal digesta. A total of 14 healthy neonatal Ganxi black goats with similar birth weight (BW: 2.35 ± 0.55 kg) were selected and allocated into two groups, only fed colostrum and milk replacer (CON, n = 7) and supplemented MOS (0.06% of birth BW) in the colostrum and milk replacer (MOS, n = 7). The results indicated that MOS supplementation significantly reduced (p < 0.05) serum IgG level at 3 and 6 h after colostrum feeding. Serum GLP-1 level of goats in the MOS group was significantly lower (p = 0.001) than that in the CON group. Goats in the MOS group had higher serum CAT and lower MDA level than those in the CON group (p < 0.05). Serum anti-inflammatory cytokine level of interleukin 4 (IL-4) was increased (p < 0.05), while pro-inflammatory cytokine IL-6 level was reduced (p < 0.05) in the MOS group when compared with the CON group. In addition, MOS supplementation remarkably increased (p < 0.05) the level of secretory IgA (sIgA) in the ileal digesta. Principal coordinate analysis of 16S rRNA sequence based on Brinary jaccard, Bray curtis, and weighted UniFrac distance of ileal microbiota showed a distinct microbial differentiation between the CON and MOS groups (p < 0.05). The relative abundance of Firmicutes in the MOS group was higher than that in the CON group, while the abundance of Verrucomicrobia was lower in the MOS group than that in the CON group at the phylum level (p < 0.05). The relative abundance of Proteobacteria tended to decrease (p = 0.078) in the MOS group at the phylum level. The results of LEfSe analysis showed that MOS group was characterized by a higher relative abundance of Lactobacillus, while the CON group was represented by a higher relative abundance of Akkermansia and Ruminiclostridium_5. Our findings demonstrated that MOS supplementation during the neonatal period increases antioxidant capacity and reduces the inflammatory response, and promotes IgA secretion and Lactobacillus colonization in the ileum. Thus, MOS induced positive effects are more pronounced in neonatal goats that might be an effective approach to maintain intestinal health and improve the surviving rate of neonatal ruminants.

14.
Curr Pharm Des ; 26(22): 2642-2656, 2020.
Article in English | MEDLINE | ID: mdl-32410554

ABSTRACT

BACKGROUND: Currently, daily consumption of green herb functional food or medicinal herbs has increased as adopted by many people worldwide as a way of life or even as an alternative to the use of synthetic medicines. Phytochemicals, which are a series of compounds of relatively complex structures and restricted distribution in plants, usually perform the defensive functions for plants against insects, bacteria, fungi or other pathogenic factors. A series of studies have found their effectiveness in the treatment or prevention of systemic diseases such as autoimmune diseases, cancer, neurodegenerative diseases, Crohn's disease and so on. OBJECTIVE: This review systematizes the literature on the mechanisms of the phytochemicals that react against unique free radicals and prevent the oxidative stress and also summarizes their role in gut microbiota inhibiting bacterial translocation and damage to the intestinal barrier and improving the intestinal membrane condition. CONCLUSION: The gut microbiota modulation and antioxidant activities of the phytochemicals shall be emphasized on the research of the active principles of the phytochemicals.


Subject(s)
Gastrointestinal Microbiome , Plants, Medicinal , Humans , Intestines , Oxidative Stress , Phytochemicals/pharmacology
15.
Trop Anim Health Prod ; 52(3): 1459-1466, 2020 May.
Article in English | MEDLINE | ID: mdl-31845116

ABSTRACT

Camels (Camelus dromedarius) have access to different browsing plant that is a major source of feed and therapeutic value but also has the potential to cause poisoning to the camel. A survey was conducted between July and September 2017 to generate information on medicinal uses, toxicity, and chemical composition of major browsing plant in the Somali Regional State of Ethiopia. A total of 150 respondents were interviewed using a structured questionnaire, and supplementary information was gathered through field observation and focus group discussions. The study showed 13 medicinal plants as being used by the respondents for the treatment of various camel ailments. The common part of the plant used to treat various aliment was leaves followed by root and bark. Dermal was the preferred route of remedy application followed by oral. The respondents identified 10 major toxic browsing plants. Those plants affect camels mainly in the dry and early rainy seasons when feed supply is scarce. Yet, poisonous browsing plants were the bottleneck problem and a major cause of economic loss in camel production in all study districts despite controlling poisonous plants through the indigenous approach. In total, 12 browse plants relished by camels were subjected to the chemical composition analysis. Laboratory result shown the chemical composition of browsing plants relished by camels has disparity except for the dry matter, and they have moderate crude protein content. Hence, the present study implies that the identified medicinal and preferred browsing plants have a significant contribution in supporting camel production in the pastoral area, but the emphasis should be given to reduce/eradicate poisonous plants that cause acute illness and death of camel.


Subject(s)
Animal Feed , Camelus/physiology , Phytotherapy , Plant Leaves/chemistry , Plants, Medicinal , Seasons , Adult , Animals , Ethiopia , Female , Focus Groups , Humans , Male , Medicine, Traditional , Middle Aged , Phytochemicals , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...