Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Front Vet Sci ; 11: 1425928, 2024.
Article in English | MEDLINE | ID: mdl-39091398

ABSTRACT

African swine fever (ASF) is a highly contagious diseases in domestic pigs and wild boars with up to 100% mortality. ASF virus (ASFV) is a causative agent responsible for ASF and highly resistant in environments, which creates a significant challenge for the control and eradication of the virus. Despite the geographical expansion of ASFV and international movement of products to sustain the swine production system, there is limited knowledge on the use of environmental samples to perform surveillance to prevent the introduction of ASFV into ASFV-free areas and for control of transmission in affected areas. Therefore, this study aimed to develop and optimize sampling techniques for environmental samples for ASFV detection. The stainless steel surfaces were contaminated with ASFV-infected blood, swabbed using different devices, and then processed through different techniques. The environmental samples were processed and tested using qPCR analysis. The results showed that the use of pre-moistened gauze surgical sponges, sweeping pads, and sponge sticks resulted in increased sensitivity, when compared to either dry sampling devices or Dacron swab. In particular, the combination of the sponge stick and the commercial nucleic acid preservative supported the best detection of ASFV DNA on the clean stainless steel surfaces evaluated. Pre-incubation for the short period of time and centrifugation at low speed were sufficient to provide satisfactory diagnostic sensitivity of ASFV detection using qPCR for environmental samples. Our findings contribute to the development of techniques for environmental samples for ASFV surveillance to prevent the introduction and dissemination of ASFV.

2.
bioRxiv ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39185164

ABSTRACT

A bovine isolate of highly pathogenic avian influenza H5N1 virus was stable for 14 days in a concentrated lactose solution at under refrigerated conditions. Heat or citric acid treatments successfully inactivated viruses in lactose. This study highlights the persistence of HPAIV in lactose and its efficient inactivation under industrial standards.

3.
J Anim Sci ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39193832

ABSTRACT

A total of 360 pigs (DNA 600 × 241; initially 5.8 kg) were used in a 45-d growth study to evaluate the effects of adding 25(OH)D3 with three levels of standardized total tract digestible (STTD) P on nursery pig growth performance, bone and urine characteristics, and serum vitamin D. Pigs were weaned at 19 d of age and randomly allotted to 1 of 6 dietary treatments with 5 pigs per pen and 12 replications per treatment. Dietary treatments were arranged in a 2 × 3 factorial with main effects of 25(OH)D3 (0 or 50 µg/kg equivalent to 2,000 IU/kg of vitamin D3; Hy-D, dsm-firmenich, Plainsboro, NJ) and STTD P (70, 100, or 130% of the NRC (2012) requirement estimate on a dietary percentage basis). All diets contained 1,653 IU/kg of vitamin D3. On d 45, 1 pig per pen was euthanized to collect the right fibula, metacarpal, and 2nd and 10th ribs. Overall, increasing STTD P increased (quadratic, P ≤ 0.003) ADG, ADFI, and G:F with minimal improvement above 100% of the NRC STTD P requirement estimate. Added 25(OH)D3 had no effect on growth performance. Increasing STTD P decreased urinary Ca concentration (linear, P < 0.001) and increased urinary P concentration (quadratic, P < 0.001). When pigs were fed added 25(OH)D3, serum 25(OH)D3 increased (quadratic, P = 0.005) as STTD P increased but no differences were observed when 25(OH)D3 was not added and STTD P increased (25(OH)D3× STTD P interaction, P = 0.032). When pigs were fed 25(OH)D3, serum 1,25(OH)2D3 increased (quadratic, P < 0.001) as STTD P decreased but the increase was not significant when no 25(OH)D3 was fed (STTD P × 25(OH)D3 interaction, P = 0.002). Bone ash percentage and weight increased (quadratic, P ≤ 0.065) in all bones as STTD P increased. Added 25(OH)D3 had no effect on bone density or bone ash weight; however, the reduction in bone ash percentage observed with reducing STTD P level tended to be less when 25(OH)D3 was provided (linear interaction, P = 0.098). Increasing STTD P decreased the likelihood of abnormal histologic bone lesions in the 10th rib. In summary, added 25(OH)D3 had limited effect on growth performance; however, an increase in serum concentrations of 25(OH)D3 and 24,25(OH)2D3 was observed. The addition of 25(OH)D3 to P-deficient diets increased percentage bone ash. Increasing STTD P to 100% of NRC (2012) requirement estimate increased growth and 130% of NRC maximized bone ash.

4.
Transl Anim Sci ; 8: txae099, 2024.
Article in English | MEDLINE | ID: mdl-38979115

ABSTRACT

Ionophores are feed additives that decrease gram-positive microbial populations by disrupting the ion transfer across cell membranes resulting in improved growth performance. Narasin (Skycis; Elanco Animal Health, Greenfield, IN) is an FDA-approved ionophore utilized for increased rate of weight gain and improved feed efficiency in growing-finishing pigs. A meta-regression analysis was conducted to evaluate the effects of added narasin in growing-finishing pig diets to predict its influence on average daily gain (ADG), feed efficiency (G:F), and carcass yield. A database was developed containing 21 technical reports, abstracts, and refereed papers from 2012 to 2021 representing 35 observations for growth performance data in studies ranging from 35 to 116 d in length (overall data). In addition, within these 35 observations, individual period data were evaluated (143 observations) using weekly, bi-weekly, or monthly performance intervals (period data). Regression model equations were developed, and predictor variables were assessed with a stepwise manual forward selection procedure. The ADG model using the overall data included ADG, ADFI, and G:F of the control group, added narasin dose, and narasin feeding duration categorized as longer or shorter than 65 d. Predictor variables included in the G:F model using overall data were ADG, ADFI, and G:F of the control group and added narasin dose. For carcass yield, the final model included ADFI and G:F of the control group, added narasin dose, and narasin feeding duration of longer than 65 d. In the period model for ADG, the predictors included ADG, ADFI, and G:F of the control group, added narasin dose, and average BW of the control group categorized into greater than or less than 105 kg. For period data for G:F, the model selected ADG, ADFI, and G:F of the control group and added narasin dose. Based on the results, the overall response to added narasin for ADG and G:F was quadratic and tended to decrease as ADG and G:F increased. A similar quadratic response was observed for the individual period data. In summary, using median values from the database for predictor variables, this meta-analysis demonstrated narasin would be expected to improve ADG between 1.06% and 1.65%, G:F between 0.71% and 1.71%, and carcass yield by 0.31% when fed continuously for longer than 65 d.

5.
PLoS One ; 19(7): e0306532, 2024.
Article in English | MEDLINE | ID: mdl-38968319

ABSTRACT

This study evaluated the use of endemic enteric coronaviruses polymerase chain reaction (PCR)-negative testing results as an alternative approach to detect the emergence of animal health threats with similar clinical diseases presentation. This retrospective study, conducted in the United States, used PCR-negative testing results from porcine samples tested at six veterinary diagnostic laboratories. As a proof of concept, the database was first searched for transmissible gastroenteritis virus (TGEV) negative submissions between January 1st, 2010, through April 29th, 2013, when the first porcine epidemic diarrhea virus (PEDV) case was diagnosed. Secondly, TGEV- and PEDV-negative submissions were used to detect the porcine delta coronavirus (PDCoV) emergence in 2014. Lastly, encountered best detection algorithms were implemented to prospectively monitor the 2023 enteric coronavirus-negative submissions. Time series (weekly TGEV-negative counts) and Seasonal Autoregressive-Integrated Moving-Average (SARIMA) were used to control for outliers, trends, and seasonality. The SARIMA's fitted and residuals were then subjected to anomaly detection algorithms (EARS, EWMA, CUSUM, Farrington) to identify alarms, defined as weeks of higher TGEV-negativity than what was predicted by models preceding the PEDV emergence. The best-performing detection algorithms had the lowest false alarms (number of alarms detected during the baseline) and highest time to detect (number of weeks between the first alarm and PEDV emergence). The best-performing detection algorithms were CUSUM, EWMA, and Farrington flexible using SARIMA fitted values, having a lower false alarm rate and identified alarms 4 to 17 weeks before PEDV and PDCoV emergences. No alarms were identified in the 2023 enteric negative testing results. The negative-based monitoring system functioned in the case of PEDV propagating epidemic and in the presence of a concurrent propagating epidemic with the PDCoV emergence. It demonstrated its applicability as an additional tool for diagnostic data monitoring of emergent pathogens having similar clinical disease as the monitored endemic pathogens.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Transmissible gastroenteritis virus , Animals , Swine , Transmissible gastroenteritis virus/genetics , Transmissible gastroenteritis virus/isolation & purification , Porcine epidemic diarrhea virus/isolation & purification , Porcine epidemic diarrhea virus/genetics , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Coronavirus Infections/epidemiology , Swine Diseases/virology , Swine Diseases/diagnosis , Retrospective Studies , Gastroenteritis, Transmissible, of Swine/diagnosis , Gastroenteritis, Transmissible, of Swine/virology , Gastroenteritis, Transmissible, of Swine/epidemiology , Polymerase Chain Reaction/methods , Deltacoronavirus/genetics , Deltacoronavirus/isolation & purification , United States/epidemiology
6.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38855930

ABSTRACT

A total of 882 pigs (PIC TR4 × [Fast LW × PIC L02]; initially 33.2 ±â€…0.31 kg) were used in a 112-d study to evaluate the effects of different bones and analytical methods on the assessment of bone mineralization response to changes in dietary P, phytase, and vitamin D in growing pigs. Pens of pigs (20 pigs per pen) were randomized to one of five dietary treatments with nine pens per treatment. Dietary treatments were designed to create differences in bone mineralization and included: 1) P at 80% of NRC (2012) standardized total tract digestible (STTD) P requirement, 2) NRC STTD P with no phytase, 3) NRC STTD P with phytase providing an assumed release of 0.14% STTD P from 2,000 FYT/kg, 4) high STTD P (128% of the NRC P) using monocalcium phosphate and phytase, and 5) diet 4 with additional vitamin D3 from 25(OH)D3. On day 112, one pig per pen was euthanized for bone, blood, and urine analysis. Additionally, 11 pigs identified as having poor body condition which indicated a history of low feed intake (unhealthy) were sampled. There were no differences between treatments for final body weight, average daily gain, average daily feed intake, gain to feed, or bone ash measurements (treatment × bone interaction) regardless of bone ash method. The response to treatment for bone density and bone mineral content was dependent upon the bone sampled (density interaction, P = 0.053; mineral interaction, P = 0.078). For 10th rib bone density, pigs fed high levels of P had increased (P < 0.05) bone density compared with pigs fed NRC levels with phytase, with pigs fed deficient P, NRC levels of P with no phytase, and high STTD P with extra 25(OH)D3 intermediate, with no differences for metacarpals, fibulas, or 2nd ribs. Pigs fed extra vitamin D from 25(OH)D3 had increased (P < 0.05) 10th rib bone mineral content compared with pigs fed deficient P and NRC levels of P with phytase, with pigs fed industry P and vitamin D, and NRC P with monocalcium intermediate. Healthy pigs had greater (P < 0.05) serum Ca, P, vitamin D concentrations, and defatted bone ash than those unhealthy, with no difference between the two health statuses for non-defatted bone ash. In summary, differences between bone ash procedures were more apparent than differences between diets. Differences in bone density and mineral content in response to dietary P and vitamin D were most apparent with 10th ribs.


Lameness is defined as impaired movement or deviation from normal gait. The evaluation of bone mineralization can be an important component of a diagnostic investigation of lameness. Lameness in growing pigs can cause an increase in morbidity and mortality, which leads to economic losses and animal welfare concerns for producers. Calcium and P are the primary minerals in skeletal tissue and their deficiency is considered to be one of the causes of lameness. To evaluate bone mineralization, it is important to know the differences between methodologies used to determine bone ash and the expected differences between the bones analyzed. Furthermore, there has been limited data comparing bone mineralization and serum Ca and P concentrations between healthy pigs and those exhibiting clinical signs of illness (unhealthy). By removing the lipid in the bone (defatting) before the bone is ashed, variation across bones is decreased compared with not removing lipid before ashing (non-defatted). The reduction in variation across bones allows for more differences to be detected among dietary treatments and health statuses of pigs. The 10th rib is more sensitive to detect dietary differences using bone density than metacarpals, fibulas, and 2nd ribs. When comparing healthy vs. unhealthy pigs exhibiting clinical signs of illness, healthy pigs have increased defatted percentage bone ash and serum Ca, P, and vitamin D.


Subject(s)
6-Phytase , Animal Feed , Calcification, Physiologic , Diet , Phosphorus, Dietary , Vitamin D , Animals , 6-Phytase/administration & dosage , 6-Phytase/pharmacology , 6-Phytase/metabolism , Animal Feed/analysis , Diet/veterinary , Swine/physiology , Swine/growth & development , Calcification, Physiologic/drug effects , Vitamin D/administration & dosage , Vitamin D/blood , Phosphorus, Dietary/metabolism , Male , Animal Nutritional Physiological Phenomena , Bone and Bones/drug effects , Bone and Bones/metabolism , Female , Dietary Supplements/analysis , Bone Density/drug effects , Phosphorus/metabolism , Phosphorus/blood , Random Allocation
7.
Transl Anim Sci ; 8: txae087, 2024.
Article in English | MEDLINE | ID: mdl-38863597

ABSTRACT

Calcium (Ca) and phosphorus (P) are minerals involved in biological functions and essential structural components of the skeleton. The body tightly regulates Ca and P to maintain homeostasis. Maternal needs for Ca and P increase during gestation and lactation to support conceptus growth and milk synthesis. Litter size and litter average daily gain (ADG) have a large effect on Ca and P requirements for sows because as they increase, the requirements increase due to a greater need from the sow. The objective of this review was to summarize published literature on Ca and P requirements in gestating and lactating sows derived from empirical data and factorial models. A total of nine empirical studies and seven factorial models were reviewed for determining the Ca and P requirements in gestation. For lactation, there were six empirical studies and seven factorial models reviewed. Empirical studies determined requirements based on the observed effect of Ca and P on bone mineralization, sow and litter performance, and milk characteristics. Factorial models generated equations to estimate Ca and P requirements using the main components of maintenance, fetal and placental growth, and maternal retention in gestation. The main components for factorial equations in lactation include maintenance and milk production. In gestation, the standardized total tract digestible phosphorus (STTD P) requirement estimates from empirical studies range from 5.4 to 9.5 g/d with total Ca ranging from 12.9 to 18.6 g/d to maximize bone measurements or performance criteria. According to the factorial models, the requirements increase throughout gestation to meet the needs of the growing fetuses and range from 7.6 to 10.6 g/d and 18.4 to 38.2 g/d of STTD P and total Ca, respectively, on day 114 of gestation for parity 1 sows. During lactation, STTD P requirement estimates from empirical studies ranged from 8.5 to 22.1 g/d and total Ca ranged from 21.2 to 50.4 g/d. For the lactation factorial models, STTD P requirements ranged from 14.2 to 25.1 g/d for STTD P and 28.4 to 55.6 g/d for total Ca for parity 1 sows with a litter size of 15 pigs. The large variation in requirement estimates makes it difficult to define Ca and P requirements; however, a minimum level of 6.0 and 22.1 g/d of STTD P during gestation and lactation, respectively, appears to be adequate to meet basal requirements. The limited data and high variation indicate a need for future research evaluating Ca and P requirements for gestating and lactating sows.

8.
Transl Anim Sci ; 8: txae085, 2024.
Article in English | MEDLINE | ID: mdl-38827160

ABSTRACT

Two studies were conducted to evaluate the effects of sodium diformate in swine diets. For Exp. 1, 360 barrows (DNA 200 × 400; initially 5.9 ±â€…0.06 kg) were used in a 38-d study. At weaning, pigs were randomly assigned to pens with five pigs per pen. Each pen was allocated to one of six treatments with 12 pens per treatment. Treatments were formulated to provide none, 0.40%, 0.60%, 0.80%, 1.00%, or 1.20% sodium diformate added at the expense of corn. Diets were fed in three phases: phase 1 from weaning to day 9, phase 2 from days 9 to 24, and phase 3 from days 24 to 38. From days 0 to 24 (phases 1 and 2), increasing sodium diformate increased (linear, P = 0.001) gain-to-feed (G:F). However, sodium diformate did not affect average daily gain (ADG) or average daily feed intake (ADFI). From days 24 to 38 (phase 3) and overall (days 0 to 38), there was no evidence of differences due to increasing sodium diformate for any growth response criteria. There was no evidence for differences in fecal dry matter (DM) on day 9. However, fecal DM decreased (linear, P < 0.05; quadratic, P = 0.097) as sodium diformate increased on day 24. In Exp. 2, 2,200 pigs (Duroc sire [PIC 800 or DNA 600] × PIC Camborough; initially 24.2 ±â€…0.30 kg) were used in a 117-d growth trial. Pens of pigs (25 pigs per pen) were randomly assigned to one of four treatments with 22 pens per treatment. Treatments were formulated with additions of none, 0.25%, 0.50%, or 0.75% sodium diformate. Diets were fed in six phases from 24 to 141 kg. For period 1 (days 0 to 32), ADFI tended to decrease then increase (quadratic, P = 0.081) with increasing sodium diformate, whereas G:F increased then decreased (quadratic, P < 0.001) with increasing sodium diformate. For period 2 (days 32 to 60), there was no evidence for differences in ADG or ADFI; however, there was a tendency for G:F to increase then decrease (quadratic, P = 0.093) with increasing sodium diformate. From days 60 to 93, increasing sodium diformate increased (linear, P < 0.01) ADG and ADFI. From days 93 to 117, increasing sodium diformate increased (linear, P < 0.05) ADG, ADFI, and G:F. Overall (days 0 to 117), pigs fed increasing sodium diformate had increased (linear, P < 0.01) ADG and a tendency for increased (linear, P = 0.075) ADFI; however, there was no evidence for differences in G:F. There were no treatment differences for any carcass characteristic. In summary, increasing sodium diformate may increase G:F in the early nursery and improve ADG after day 60 (approximately 82 kg) in the finishing period.

9.
Transl Anim Sci ; 8: txae063, 2024.
Article in English | MEDLINE | ID: mdl-38689757

ABSTRACT

Due to its importance in animal feed, soybean meal has been extensively studied to optimize its use in livestock diets. Despite extensive research, the industry has not fully characterized specific areas of soybean processing such as the inclusion of soybean byproducts added back to soybean meal during processing. Soybean processing byproducts can encompass a large variety of materials including weeds and foreign material, soybean hulls, gums, soapstocks, lecithins, spent bleaching clays, and deodorizer distillates. Despite the potential for being added back to soybean meal when a crushing plant is integrated with an oil refinery, there is currently limited information on the composition of many of these soybean processing byproducts and their subsequent effects on soybean meal quality and animal performance. Therefore, there may be opportunities for a new area of research focused on soybean processing byproducts and their optimal use within the livestock feed industry. This review summarizes the current information on soybean byproducts with a focus on identifying the areas with the greatest potential for future research in swine and poultry nutrition.

10.
Transl Anim Sci ; 8: txae049, 2024.
Article in English | MEDLINE | ID: mdl-38623565

ABSTRACT

Three studies were conducted evaluating the use of benzoic acid in swine diets. In experiment 1, 350 weanling barrows (DNA 200 × 400; initially 5.9 ±â€…0.04 kg) were allotted to one of the five dietary treatments with 14 pens per treatment. Diets were fed in three phases: phase 1 from weaning to day 10, phase 2 from days 10 to 18, and phase 3 from days 18 to 38. Treatment 1 contained no benzoic acid throughout all three phases (weaning to day 42). Treatment 2 included 0.50% benzoic acid throughout all three phases. Treatment 3 contained 0.50% benzoic acid in phases 1 and 2, and 0.25% benzoic acid in phase 3. Treatment 4 contained 0.50% benzoic acid in phases 1 and 2, and no benzoic acid in phase 3. Treatment 5 contained 0.50% benzoic acid in phase 1, 0.25% benzoic acid in phase 2, and no benzoic acid in phase 3. For the overall period, pigs fed 0.50% in the first two phases and 0.25% benzoic acid in the final phase had greater (P < 0.05) average daily gain (average daily gain) than pigs fed no benzoic acid through all three phases, or pigs fed 0.50% in the first two phases and no benzoic acid in the final phase, with pigs fed the other treatments intermediate. Pigs fed 0.50% in the first two phases and 0.25% benzoic acid in the final phase had improved (P < 0.05) gain-to-feed ratio (G:F) compared with pigs fed no benzoic acid throughout all three phases, pigs fed 0.50% in the first two phases and no benzoic acid in the third phase, or pigs fed 0.50%, 0.25%, and no benzoic acid, respectively. For experiment 2, a 101-d trial was conducted using two groups of 1,053 finishing pigs (2,106 total pigs; PIC 337 × 1,050; initially 33.3 ±â€…1.9 kg). Dietary treatments were corn-soybean meal-dried distillers grains with solubles-based with the addition of none, 0.25%, or 0.50% benzoic acid. Overall, pigs fed increasing benzoic acid had a tendency for increased average daily feed intake (linear, P = 0.083) but decreased G:F (linear, P < 0.05). In experiment 3, 2,162 finishing pigs (DNA 600 × PIC 1050; initially 31.4 ±â€…2.2 kg) were used in a 109-d trial. Dietary treatments were formulated with or without 0.25% benzoic acid. For the overall experimental period, pigs fed benzoic acid had increased (P < 0.05) G:F. In summary, feeding benzoic acid elicits improved growth performance when fed throughout the entire nursery period while improved G:F in growing-finishing pigs was observed in one experiment, but not in the other.

11.
Animals (Basel) ; 14(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612372

ABSTRACT

Biosecurity practices aim to reduce the frequency of disease outbreaks in a farm, region, or country and play a pivotal role in fortifying the country's pork industry against emerging threats, particularly foreign animal diseases (FADs). This article addresses the current biosecurity landscape of the US swine industry by summarizing the biosecurity practices reported by the producers through the United States Swine Health Improvement Plan (US SHIP) enrollment surveys, and it provides a general assessment of practices implemented. US SHIP is a voluntary, collaborative effort between industry, state, and federal entities regarding health certification programs for the swine industry. With 12,195 sites surveyed across 31 states, the study provides a comprehensive snapshot of current biosecurity practices. Key findings include variability by site types that have completed Secure Pork Supply plans, variability in outdoor access and presence of perimeter fencing, and diverse farm entry protocols for visitors. The data also reflect the industry's response to the threat of FADs, exemplified by the implementation of the US SHIP in 2020. As the US SHIP program advances, these insights will guide industry stakeholders in refining biosecurity practices, fostering endemic re-emerging and FAD preparedness, and ensuring the sustainability of the swine industry in the face of evolving challenges.

12.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38563521

ABSTRACT

Pigs from 64 commercial sites across 14 production systems in the Midwest United States were evaluated for baseline biological measurements used to determine bone mineralization. There were three pigs selected from each commercial site representing: 1) a clinically normal pig (healthy), 2) a pig with evidence of clinical lameness (lame), and 3) a pig from a hospital pen that was assumed to have recent low feed intake (unhealthy). Pigs ranged in age from nursery to market weight, with the three pigs sampled from each site representing the same age or phase of production. Blood, urine, metacarpal, fibula, 2nd rib, and 10th rib were collected and analyzed. Each bone was measured for density and ash (defatted and non-defatted technique). A bone × pig type interaction (P < 0.001) was observed for defatted and non-defatted bone ash and density. For defatted bone ash, there were no differences among pig types for the fibulas, 2nd rib, and 10th rib (P > 0.10), but metacarpals from healthy pigs had greater (P < 0.05) percentage bone ash compared to unhealthy pigs, with the lame pigs intermediate. For non-defatted bone ash, there were no differences among pig types for metacarpals and fibulas (P > 0.10), but unhealthy pigs had greater (P < 0.05) non-defatted percentage bone ash for 2nd and 10th ribs compared to healthy pigs, with lame pigs intermediate. Healthy and lame pigs had greater (P < 0.05) bone density than unhealthy pigs for metacarpals and fibulas, with no difference observed for ribs (P > 0.10). Healthy pigs had greater (P < 0.05) serum Ca and 25(OH)D3 compared to unhealthy pigs, with lame pigs intermediate. Healthy pigs had greater (P < 0.05) serum P compared to unhealthy and lame pigs, with no differences between the unhealthy and lame pigs. Unhealthy pigs excreted significantly more (P < 0.05) P and creatinine in the urine compared to healthy pigs with lame pigs intermediate. In summary, there are differences in serum Ca, P, and vitamin D among healthy, lame, and unhealthy pigs. Differences in bone mineralization among pig types varied depending on the analytical procedure and bone, with a considerable range in values within pig type across the 14 production systems sampled.


There is little literature or data comparing bone diagnostic results for healthy, lame, and unhealthy pigs. Typically, diagnosticians assessing clinical lameness cases in pigs will measure bone mineralization along with histopathological evaluation to diagnose and assess the severity of metabolic bone disease. Bone ash is the primary method to determine bone mineralization, with the removal of the lipid in the bone (defatting) before the bone is ashed, compared to not removing the lipid before the ashing (non-defatted). Defatting the bone reduces the amount of variation across the bones compared to non-defatting. In this diagnostic survey, there was no difference among the healthy, lame, or unhealthy pigs when comparing defatted bone ash, however, unhealthy pigs had an increased bone ash percentage compared to the healthy and lame pigs when the bones were assessed using the non-defatted procedure. There was variation across production systems and pig types for serum vitamin D. When comparing the pig types, healthy pigs had increased serum Ca, P, and vitamin D [25(OH)D3] compared to the unhealthy pigs, with the lame pigs intermediate.


Subject(s)
Calcification, Physiologic , Minerals , Swine , Animals , Bone Density , Ribs , Animal Feed/analysis , Diet
13.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38571338

ABSTRACT

A total of 720 barrows (line 200 × 400, DNA genetics) were used in two 42-d nursery trials (initially 6.20 ±â€…0.12 kg and 5.63 ±â€…0.16 kg, respectively) to evaluate strategies for allotting pigs to pens in randomized controlled trials. At placement, the population was split into three cohorts with similar average weight and standard deviation and randomly assigned to one of the three allotment strategies. Strategy 1 (random) utilized a simple randomization strategy with each pig randomized to pens independent of all other pigs. Strategy 2 (body weight [BW] distribution) sorted each pig within the cohort into one of the five BW groups. One pig from each weight group was then randomly assigned to a pen such that distribution of BW within pen was uniform across pens. Strategy 3 (BW grouping) sorted pigs within the cohort into 3 BW categories: light, medium, and heavy. Within each BW category, pigs were randomized to pen to create pens of pigs from each BW category. Within each experiment, there were 72 pens with five pigs per pen and 24 pens per allotment strategy. For all strategies, once pigs were allotted to pens, pens were allotted to one of the two treatments for a concurrent trial. In experiment 1, environmental enrichment using ropes tied near the pan of the feeder was compared to a control with no enrichment. In experiment 2, treatment diets consisted of basal levels of Zn and Cu from the trace mineral premix for the duration of the study (110 and 17 mg/kg, respectively; control), or diets (supplemented control) with carbadox (50 g/ton; Mecadox, Phibro Animal Health, Teaneck, NJ) fed in phase 1 (days 0 to 22) and 2 (days 22 to 43), pharmacological levels of Zn and Cu (2,414 mg/kg Zn from ZnO; 168 mg/kg Cu from CuSO4) fed in phase 1, and only pharmacological levels of Cu (168 mg/kg Cu from CuSO4) fed in phase 2. These treatment designs were used to determine the impact on coefficient of variation (CV) and to estimate the number of replications required to find significant treatment differences based on allotment strategy. There were no meaningful allotment strategy × treatment interactions for either study. For between-pen CV, pigs allotted using BW distribution and BW grouping strategies had the lowest CV at allotment and final weight in both trials. For overall average daily gain in experiments 1 and 2 in experiment 2, the BW distribution strategy required the fewest replications to detect differences in performance. However, there is no meaningful difference between allotment strategies in replications required to detect significant differences for gain:feed ratio.


Decreasing variation between experimental units increases the likelihood of finding a statistically significant difference if one exists. Assignment of animals to experimental units (pens) may contribute to that variation. Therefore, the purpose of this trial was to investigate the effect that different methods of allotting pigs to pens (experimental unit) have on variation and in turn, the number of replications required to detect a significant difference of a given amount between treatments. The random strategy assigned pigs to pens in a completely random fashion. The body weight (BW) distribution strategy ordered pigs from lightest to heaviest and created five groups based on BW. Each pen was randomly assigned one pig from each of the five groups. The BW grouping strategy again ordered pigs from lightest to heaviest but split pigs into three groups based on BW and each pen was randomly assigned pigs from only one BW group such that there were pens of light pigs, pens of medium pigs, and pens of heavy pigs. Ultimately, the best allotment strategy depends on the parameter of interest. For final BW and overall ADG, the BW grouping method required the fewest pens to detect statistically significant differences.


Subject(s)
Animal Husbandry , Animals , Male , Swine , Animal Husbandry/methods , Random Allocation , Body Weight , Animal Feed/analysis , Diet/veterinary
14.
Transl Anim Sci ; 8: txae002, 2024.
Article in English | MEDLINE | ID: mdl-38375403

ABSTRACT

Three experiments evaluated omega-3 fatty acids, provided by O3 trial feed, on nursery pig growth performance, mortality, and response to an LPS immune challenge or natural Porcine reproductive and respiratory virus (PRRSV) outbreak. In experiment 1, 350 pigs (241 × 600, DNA; initially 5.8 kg) were used. Pens of pigs were randomly assigned to one of the five dietary treatments containing increasing omega-3 fatty acids (0%, 1%, 2%, 3%, and 4% O3 trial feed) with 14 replications per treatment. On day 25, two pigs per pen were injected intramuscularly with 20 µg Escherichia coli LPS per kg BW and one pig per pen was injected with saline as a control. Body temperature was taken from all three pigs prior to and 2, 4, 6, and 12 h post-LPS challenge. Serum IL-1ß and TNF-α concentrations were determined in LPS-challenged pigs 24 h prior and 4 h post-LPS challenge. There was no interaction between treatment and time for change in body temperature (P > 0.10). Overall, increasing the O3 trial feed did not affect (P > 0.10) ADG, ADFI, G:F, IL-1ß, or TNF-α. In experiment 2, 1,056 pigs (PIC TR4 × [Fast LW × PIC L02] initially 7.3 kg) were used. Pens of pigs were randomly assigned to one of the four dietary treatments containing increasing omega-3 fatty acids (0%, 0.75%, 1.5%, and 3% O3 trial feed) with 12 replications per treatment. Oral fluids tested negative on days 7 and 14, but then positive for North American PRRSV virus via PCR on days 21, 28, 35, and 42. Overall, increasing O3 trial feed increased (linear, P < 0.001) ADG, ADFI, and G:F and decreased (linear, P = 0.027) total removals and mortality. In experiment 3, 91,140 pigs (DNA 600 × PIC 1050; initially 5.1 kg), originating from PRRSV-positive sow farms, were used across eight nursery sites. Each site contained five barns with two rooms per barn and ~1,100 pigs per room. Rooms of pigs were blocked by nursery site and allocated within sow source to one of the two dietary treatments (control or 3% O3 trial feed) with 40 replications per treatment. Oral fluids from 61 of the 80 rooms tested positive for North American PRRSV virus 1 wk postweaning and 78 of the 80 rooms tested positive 3 wk after weaning. Overall, O3 trial feed did not affect ADG, ADFI, or G:F but increased (P < 0.001) total removals and mortalities. In summary, increasing omega-3 fatty acids, sourced by O3 trial feed, did not improve growth performance or immune response in healthy pigs given an LPS challenge. However, it appears that if omega-3 fatty acids are fed prior to a natural PRRSV break (as in experiment 2), growth performance may be improved, and mortality reduced.

15.
Transl Anim Sci ; 8: txae009, 2024.
Article in English | MEDLINE | ID: mdl-38343389

ABSTRACT

African swine fever virus (ASFV) is a highly infectious virus known to cause substantial mortality and morbidity in pigs. The transmissibility and severity of disease within pigs, as well as the potentially resultant catastrophic trade ramifications, warrant its status as a foreign animal disease of substantial concern to the United States. The ASFV virus can survive for extended periods of time outside its host, and its greatest concentration is often observed in blood and organs, products that are frequently used as raw materials to manufacture porcine-derived ingredients fed to animals in the United States. Unlike ruminant-based proteins that cannot be fed to ruminant animals, it is permissible to feed porcine-derived ingredients to pigs in the United States. However, the increased threat of ASFV entry into the United States and our evolving understanding of viral transmission by feedstuffs warrant further investigation into this practice. The objectives of this review are to describe the current knowledge of ASFV survival in raw materials used to produce porcine-based ingredients, identify priorities for future research, and summarize potential options for managing risk until additional knowledge can be gained. While limited data is available for ASFV-specific mitigation, the temperatures used in both spray-drying and rendering have proven to effectively reduce viral concentrations of multiple swine viruses below detectable limits. However, some of these procedures may not eliminate the risk of recontamination, which necessitates the need for additional prevention or mitigation measures. Most published research in this area relies on direct inoculation of raw ingredient, not the finished porcine-derived ingredient. Currently, three published studies report ASFV mitigation in either thermally processed conditions (>40 °C) or ingredient quarantine (<40 °C). Virus inactivation, or the reduction of viral concentrations below detectable levels, was observed in the thermally processed study and one of the two ingredient quarantine studies. In conclusion, there is little knowledge to eliminate the risk of recontamination in porcine-derived ingredients; therefore, future research should aim to support and validate the currently available literature for the continued and safe production of porcine-derived ingredients in the event of a foreign animal disease outbreak.

16.
Animals (Basel) ; 14(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338036

ABSTRACT

The extended storage of feed ingredients has been suggested as a method to mitigate the risk of pathogen transmission through contaminated ingredients. To validate the approach of extended storage of complete swine feed for the inactivation of swine viruses, an experiment was conducted wherein swine feed was inoculated with 10 mL of 1 × 105 TCID50/mL of porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV), and Senecavirus A (SVA) and stored for 58 d at 23.9 °C. Measures of feed quality were also evaluated at the initiation and conclusion of the storage period including screening for mycotoxins, characterization of select microbiological measures, and stability of phytase and dietary vitamins. Storing feed for 58 d under either ambient or anaerobic and temperature-controlled storage conditions did not result in substantial concerns related to microbiological profiles. Upon exposure to the feed following 58 d of storage in a swine bioassay, previously confirmed naïve pigs showed no signs of PEDV or SVA replication as detected by the PCR screening of oral fluids and serum antibody screening. Infection with SVA was documented in the positive control room through diagnostic testing through the State of Minnesota. For PRRSV, the positive control room demonstrated infection. For rooms consuming inoculated feed stored for 58 d, there was no evidence of PRRSV infection with the exception of unintentional aerosol transmission via a documented biocontainment breach. In summary, storing feed for 58 d at anaerobic and temperature-controlled environmental conditions of 23.9 °C validates that the extended storage of complete swine feed can be a method to reduce risks associated with pathogen transmission through feed while having minimal effects on measures of nutritional quality.

17.
Animals (Basel) ; 14(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38254449

ABSTRACT

This experiment aimed to evaluate commercially available disinfectants and their application methods against porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV) on truck cab surfaces. Plastic, fabric, and rubber surfaces inoculated with PEDV or PRRSV were placed in a full-scale truck cab and then treated with one of eight randomly assigned disinfectant treatments. After application, surfaces were environmentally sampled with cotton gauze and tested for PEDV and PRRSV using qPCR duplex analysis. There was a disinfectant × surface interaction (p < 0.0001), indicating a detectable amount of PEDV or PRRSV RNA was impacted by disinfectant treatment and surface material. For rubber surfaces, 10% bleach application had lower detectable amounts of RNA compared to all other treatments (p < 0.05) except Intervention via misting fumigation, which was intermediate. In both fabric and plastic surfaces, there was no evidence (p > 0.05) of a difference in detectable RNA between disinfectant treatments. For disinfectant treatments, fabric surfaces with no chemical treatment had less detectable viral RNA compared to the corresponding plastic and rubber (p < 0.05). Intervention applied via pump sprayer to fabric surfaces had less detectable viral RNA than plastic (p < 0.05). Furthermore, 10% bleach applied via pump sprayer to fabric and rubber surfaces had less detectable viral RNA than plastic (p < 0.05). Also, a 10 h downtime, with no chemical application or gaseous fumigation for 10 h, applied to fabric surfaces had less detectable viral RNA than other surfaces (p < 0.05). Sixteen treatments were evaluated via swine bioassay, but all samples failed to produce infectivity. In summary, commercially available disinfectants successfully reduced detectable viral RNA on surfaces but did not eliminate viral genetic material, highlighting the importance of bioexclusion of pathogens of interest.

18.
Transl Anim Sci ; 8: txad140, 2024.
Article in English | MEDLINE | ID: mdl-38221959

ABSTRACT

A total of 280 pigs (DNA 241 × 600, initially 10.4 ±â€…0.24 kg) were used in a 21-d study to determine the available P (aP) release curve for Sunphase HT phytase (Wuhan Sunhy Biology Co., Ltd., Wuhan, P.R. China) when fed diets with a high phytate concentration. On day 21 post-weaning, considered day 0 of the study, pigs were blocked by average pen body weight (BW) and randomly allotted to 1 of 7 dietary treatments with 5 pigs per pen and 8 pens per treatment. Dietary treatments were derived from a single basal diet, and ingredients including phytase, monocalcium P, limestone, and sand were added to create the treatment diets. Treatments included three diets with increasing (0.11%, 0.19%, and 0.27%) aP from monocalcium P, or four diets with increasing phytase (250, 500, 1,000, or 2,000 phytase unit (FTU)/kg) added to the diet formulated to 0.11% aP. All diets were corn-soybean meal-canola meal-based and were formulated to contain 1.24% SID Lys, a 1.10:1 total calcium-to-phosphorus ratio, and a calculated 0.32% phytate P. Prior to the beginning of the study, all pigs were fed a diet containing 0.11% aP from days 18 to 21 post-weaning. At the conclusion of the study, 1 pig, closest to the mean weight of each pen, was euthanized, and the right fibula, 10th rib, and metacarpal were collected to determine bone ash and density. After cleaning, bones were submerged in ultra-purified water under a vacuum for 4 h and then weighed to calculate the density (Archimedes principle). For bone ash, bones were processed using the non-defatted method. From days 0 to 21, increasing aP from monocalcium P increased (linear, P ≤ 0.014) average daily gain (ADG), gain-to-feed (G:F), and final BW. Pigs fed increasing phytase had increased (linear, P ≤ 0.045) ADG, final BW, and plasma inositol concentration as well as improved (quadratic, P = 0.023) G:F. For bone characteristics, pigs fed increasing aP from inorganic P had a linear improvement (P ≤ 0.019) in fibula bone ash weight and percentage bone ash, rib bone ash weight and bone density, and all metacarpal bone properties, with a quadratic response (P ≤ 0.030) for fibula bone density and rib percentage ash. Additionally, pigs fed increasing phytase had increased (P < 0.05) bone ash weight, percentage bone ash, and bone density in either a linear or quadratic fashion depending on the bone analyzed. The available P release curve generated for Sunphase HT phytase for percentage bone ash combining values from the right fibula, 10th rib, and metacarpal is aP release, % = (0.360 × FTU) ÷ (2,330.250 + FTU).

19.
Transl Anim Sci ; 7(1): txad116, 2023.
Article in English | MEDLINE | ID: mdl-37901201

ABSTRACT

A total of 300 pigs (241 × 600; DNA, Columbus, NE; initially 6.0 ±â€…0.01 kg) were used in a 42-d trial to determine the effects of vitamin E levels and partially replacing vitamin E with a polyphenol (Cabanin CSD, R2 Argo, Denmark) on growth performance, complete blood count, serum thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), and cytokine panel. Sixty pens of pigs were weighed and allotted to one of the five dietary treatments in a completely randomized design with 12 pens per treatment. A control treatment was formulated to provide 15 IU/kg of vitamin E equivalence from vitamin E. This control treatment was then used as a base for three replacement strategy diets to determine the effects of replacing an additional 60 IU/kg of vitamin E with polyphenol in diets containing a basal level of vitamin E requirement estimate (15 IU/kg). First, an additional 60 IU/kg of vitamin E was added for a total of 75 IU/kg of vitamin E equivalence. Second, 50% of the additional vitamin E (30 IU/kg) was replaced with the equivalency of polyphenol. Third, all 60 IU/kg of the additional vitamin E was replaced with the equivalency of polyphenol. To evaluate whether there are negative effects of feeding nursery pigs a high level of polyphenol, a fifth treatment was formulated to provide 575 IU/kg of vitamin E equivalence with 75 IU/kg from vitamin E and 500 IU/kg from polyphenol. Whole blood and serum samples were collected on days 10 and 42, and pig weights and feed disappearance were measured on days 10, 21, 31, 38, and 42. For growth performance, increasing vitamin E equivalence tended to improve (quadratic, P < 0.10) gain-to-feed ratio (G:F) from days 10 to 21, and tended to improve (linear, P < 0.10) G:F from days 21 to 42 and 0 to 42. There was a vitamin E equivalence × day interaction (P = 0.050) for serum SOD activity. Increasing vitamin E equivalence increased (linear, P < 0.05) serum SOD activity on day 42 but not on days 10 (P > 0.10). For serum cytokines, there was no evidence of differences (P > 0.10) between treatments and vitamin E equivalence. Moreover, there was no evidence of differences (P > 0.10) in all response variables between the three replacement strategies throughout the entire periods. In summary, increasing vitamin E equivalence tended to improve G:F, which may be related to the improved SOD activity. Furthermore, polyphenol can effectively replace vitamin E provided above the vitamin E requirement to provide similar benefits from increasing vitamin E equivalence.

20.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37837391

ABSTRACT

A total of 360 pigs (DNA 600 × 241, DNA; initially 11.9 ±â€…0.56 kg) were used in a 28-d trial to evaluate the effects of different bones and analytical methods on the assessment of bone mineralization response to dietary P, vitamin D, and phytase in nursery pigs. Pens of pigs (six pigs per pen) were randomized to six dietary treatments in a randomized complete block design with 10 pens per treatment. Dietary treatments were designed to create differences in bone mineralization and included: (1) 0.19% standardized total tract digestibility (STTD) P (deficient), (2) 0.33% STTD P (NRC [2012] requirement) using monocalcium phosphate, (3) 0.33% STTD P including 0.14% release from phytase (Ronozyme HiPhos 2700, DSM Nutritional Products, Parsippany, NJ), (4) 0.44% STTD P using monocalcium phosphate, phytase, and no vitamin D, (5) diet 4 with vitamin D (1,653 IU/kg), and (6) diet 5 with an additional 50 µg/kg of 25(OH)D3 (HyD, DSM Nutritional Products, Parsippany, NJ) estimated to provide an additional 2,000 IU/kg of vitamin D3. After 28 d on feed, eight pigs per treatment were euthanized for bone (metacarpal, 2nd rib, 10th rib, and fibula), blood, and urine analysis. The response to treatment for bone density and ash was dependent upon the bone analyzed (treatment × bone interaction for bone density, P = 0.044; non-defatted bone ash, P = 0.060; defatted bone ash, P = 0.068). Thus, the response related to dietary treatment differed depending on which bone (metacarpal, fibula, 2nd rib, or 10th rib) was measured. Pigs fed 0.19% STTD P had decreased (P < 0.05) bone density and ash (non-defatted and defatted) for all bones compared to 0.44% STTD P, with 0.33% STTD P generally intermediate or similar to 0.44% STTD P. Pigs fed 0.44% STTD P with no vitamin D had greater (P < 0.05) non-defatted fibula ash compared to all treatments other than 0.44% STTD P with added 25(OH)D3. Pigs fed diets with 0.44% STTD P had greater (P < 0.05) defatted second rib ash compared to pigs fed 0.19% STTD P or 0.33% STTD P with no phytase. In summary, bone density and ash responses varied depending on bone analyzed. Differences in bone density and ash in response to P and vitamin D were most apparent with fibulas and second ribs. There were apparent differences in the bone ash percentage between defatted and non-defatted bone. However, differences between the treatments remain consistent regardless of the analytic procedure. For histopathology, 10th ribs were more sensitive than 2nd ribs or fibulas for the detection of lesions.


Lameness is defined as impaired movement or deviation from normal gait. There are many factors that can contribute to lameness, including but not limited to: infectious disease, genetic and conformational anomaly, and toxicity that affects the bone, muscle, and nervous systems. Metabolic bone disease is another cause of lameness in swine production and can be caused by inappropriate levels of essential vitamins or minerals. To understand and evaluate bone mineralization, it is important to understand the differences in diagnostic results between different bones and analytical techniques. Historically, percentage bone ash has been used as one of the procedures to assess metabolic bone disease as it measures the level of bone mineralization; however, procedures and results vary depending on the methodology and type of bone measured. Differences in bone density and ash in response to dietary P and vitamin D were most apparent in the fibulas and second ribs. There were apparent differences in the percentage of bone ash between defatted and non-defatted bone; however, the differences between the treatments remain consistent regardless of the analytic procedure. For histopathology, 10th ribs were more sensitive than 2nd ribs or fibulas for detection of lesions associated with metabolic bone disease.


Subject(s)
6-Phytase , Phosphorus, Dietary , Swine , Animals , Phosphorus, Dietary/pharmacology , Calcification, Physiologic , 6-Phytase/pharmacology , Vitamin D/pharmacology , Gastrointestinal Tract , Diet/veterinary , Vitamins/pharmacology , DNA/pharmacology , Phosphates/pharmacology , Animal Feed/analysis , Phosphorus , Digestion
SELECTION OF CITATIONS
SEARCH DETAIL