Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Plast Surg ; 79(4): e25-e29, 2017 Oct.
Article in English | MEDLINE | ID: mdl-24691313

ABSTRACT

BACKGROUND: Nitric oxide (NO) is an important cytoprotective agent against ischemia and reperfusion injury (IRI). Enhancing NO bioavailability via exogen NO synthases (NOSs) and L-arginine promotes conversation to NO, circumventing the problem of nonfunctioning NOSs under hypoxic and acidic conditions. In this study, the authors evaluated the therapeutic efficacy of endothelial, inducible and neuronal NOS, and L-arginine on reperfusion-induced microcirculatory alterations and hemodynamic adverse effects in the microvasculature of skeletal muscle. METHODS: Vascular pedicle isolated rat cremaster model was used that underwent 2 hours of warm ischemia followed by 1 hour of reperfusion. At 30 minutes before ischemia, normal saline (control group with/without ischemia), endothelial-, inducible-, and neuronal NOSs (2 IE) and L-arginine (50 mg/kg BW) were administered systemically (IV). Ischemia-reperfusion-induced microcirculatory alterations were measured after 1 hour of reperfusion. Mean arterial blood pressure and heart frequency were measured throughout the experiment to determine hemodynamic adverse effects. RESULTS: The isoforms of NOSs and L-arginine attenuated ischemia-reperfusion-induced vasoconstriction, improved red blood cell velocity, capillary flow, and leukocyte adherence to the endothelium wall. Hemodynamics was stable throughout the experiment. CONCLUSIONS: Enhancing NO bioavailability via exogen application of NOSs and L-arginine significantly attenuated ischemia-reperfusion-induced microcirculatory alterations in the microvasculature of skeletal muscle. Significant hemodynamic adverse effects were not present, thus demonstrating this approach might be useful for therapeutic intervention. This "pharmacologic preconditioning" could be an easy and effective interventional strategy to uphold conversation of L-arginine to NO under ischemic conditions.


Subject(s)
Arginine/therapeutic use , Nitric Oxide Synthase/therapeutic use , Nitric Oxide/metabolism , Protective Agents/therapeutic use , Reperfusion Injury/prevention & control , Animals , Arginine/pharmacology , Biological Availability , Biomarkers/metabolism , Drug Therapy, Combination , Male , Microcirculation/drug effects , Nitric Oxide Synthase/pharmacology , Protective Agents/pharmacology , Rats , Rats, Wistar , Reperfusion Injury/metabolism , Treatment Outcome
2.
Shock ; 30(4): 394-400, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18323747

ABSTRACT

Thermal injuries greater than 20% body surface area (BSA) result in systemic shock with generalized edema in addition to local tissue destruction. Burn shock is induced by a variety of mediators, mainly immunomodulative cytokines. This experimental study evaluates if burn shock can be induced in healthy rats by transfer of burn plasma (BP) with mediators. Thermal injury was induced by hot water (100 degrees C water, 12 s, 30% BSA) in male syngenic Wistar rats. Donor rats were killed 4 h posttrauma, and BP was harvested. Burn plasma was transferred to healthy animals by continuous intravenous infusion in three types of dilution (100%, 10%, and 1%). Positive controls were directly examined 4 h after thermal injury, and negative control rats had a continuous infusion done with sham burn (SB) plasma (37 degrees C water, 12 s, 30% BSA). Afterwards, intravital fluorescence microscopy was performed in postcapillary mesenteric venules at 0, 60, and 120 min. Edema formation was assessed by relative changes over time in fluorescence intensity of fluorescein isothiocyanate-albumin in the intravascular versus the extravascular space. The interactions of leucocytes and endothelium were evaluated by quantification of leukocyte sticking. Additionally, microhemodynamic (volumetric blood flow, erythrocyte velocity, venular wall shear rate, venular diameters) and macrohemodynamic parameters (blood pressure, heart frequency, temperature) were assessed online (arterial catheter). For statistics, an ANOVA was performed with Bonferroni adjustment procedure. Differences were considered significant when P < 0.05. There are no statistically significant differences in microhemodynamics or macrohemodynamics between study groups. Burn plasma infusion and thermal injury lead to significant increases in fluorescein isothiocyanate-albumin extravasation, whereas SB plasma shows no significant changes. Even BP diluted in 0.9% saline (10% and 1%) results in a similar transvascular flux of plasma proteins as direct thermal injury. Differences between positive controls and BP infusion are not significant, whereas all groups are statistically different from the SB group (P<0.05). Leukocyte sticking is significantly increased in all groups except the SB group, and the number of adherent leukocytes is dose dependent. The present study demonstrates that as early as 4 h after thermal injury, there are sufficient factors (e.g., cytokines) in BP to induce systemic burn shock in healthy rats even in diluted plasma (1%). However, the "key" cytokines are not identified at this point. The burned tissue is no longer required for burn shock induction, and the pathophysiologic process seems to be self-perpetuating as early as 4 h posttrauma. Leukocytes are activated by thermal injury and BP infusion. The role of leukocyte-endothelium interactions for edema formation remains uncertain and requires further investigation.


Subject(s)
Burns/blood , Burns/pathology , Edema/pathology , Animals , Blood Pressure , Endothelial Cells/cytology , Endothelium, Vascular/metabolism , Hemodynamics , Leukocytes/cytology , Leukocytes/metabolism , Lymphocyte Activation , Male , Microscopy, Fluorescence/methods , Rats , Rats, Wistar , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...