Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 51(8): 2011-27, 2006 Apr 21.
Article in English | MEDLINE | ID: mdl-16585842

ABSTRACT

To complement a project towards the development of real-time optical biopsy for brain tissue discrimination and surgical resection guidance, the optical properties of various brain tissues were measured in vitro and correlated to features within clinical diffuse reflectance tissue spectra measured in vivo. Reflectance and transmission spectra of in vitro brain tissue samples were measured with a single-integrating-sphere spectrometer for wavelengths 400-1300 nm and converted to absorption and reduced scattering spectra using an inverse adding-doubling technique. Optical property spectra were classified as deriving from white matter, grey matter or glioma tissue according to histopathologic diagnosis, and mean absorption and reduced scattering spectra were calculated for the three tissue categories. Absolute reduced scattering and absorption values and their relative differences between histopathological groups agreed with previously reported results with the exception that absorption coefficients were often overestimated, most likely due to biologic variability or unaccounted light loss during reflectance/transmission measurement. Absorption spectra for the three tissue classes were dominated by haemoglobin absorption below 600 nm and water absorption above 900 nm and generally determined the shape of corresponding clinical diffuse reflectance spectra. Reduced scattering spectral shapes followed the power curve predicted by the Rayleigh limit of Mie scattering theory. While tissue absorption governed the shape of clinical diffuse reflectance spectra, reduced scattering determined their relative emission intensities between the three tissue categories.


Subject(s)
Algorithms , Brain Neoplasms/diagnosis , Brain Neoplasms/physiopathology , Brain/physiopathology , Diagnosis, Computer-Assisted/methods , Models, Biological , Spectrum Analysis/methods , Brain Neoplasms/classification , Computer Simulation , Humans , In Vitro Techniques , Light , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity
2.
Article in English | MEDLINE | ID: mdl-11370353

ABSTRACT

We describe a method for estimating 2-D target motion using ultrasound. The method is based on previous ensemble tracking techniques, which required at least four parallel receive beams and 2-D pattern matching. In contrast, the method described requires only two parallel receive beams and 1-D pattern matching. Two 1-D searches are performed, one in each lateral direction. The direction yielding the best match indicates the lateral direction of motion. Interpolation provides sub-pixel magnitude resolution. We compared the two beam method with the four beam method using a translating speckle target at three different parallel beam steering angles and transducer angles of 0, 45, and 90 degrees. The largest differences were found at 90 degrees, where the two beam method was generally more accurate and precise than the four beam method and also less prone to directional errors at small translations. We also examined the performance of both methods in a laminar flow phantom. Results indicated that the two beam method was more accurate in measuring the flow angle when the flow velocity was small. Computer simulations supported the experimental findings. The poorer performance of the four beam method was attributed to differences in correlation among the parallel beams. Specifically, center beams 2 and 3 correlated better with each other than with the outer beams. Because the four beam method used a comparison of a kernel region in beam pair 2-3 with two different beam pairs 1-2 and 3-4, the 2-to-1 and 3-to-4 components of this comparison increased the incidence of directional errors, especially at small translations. The two beam method used a comparison between only two beams and so was not subject to this source of error. Finally, the two beam method did not require amplitude normalization, as was necessary for the four beam method, when the two beams were chosen symmetric to the transmit axis. We conclude that two beam ensemble tracking can accurately estimate motion using only two parallel receive beams.


Subject(s)
Ultrasonics , Biomedical Engineering , Blood Flow Velocity , Computer Simulation , Humans , Motion , Ultrasonography
3.
Ultrasonics ; 38(1-8): 369-75, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10829690

ABSTRACT

Speckle tracking methods overcome the major limitations of current Doppler methods for flow imaging and quantification: angle dependence and aliasing. In this paper, we review the development of speckle tracking, with particular attention to the advantages and limitations of two-dimensional algorithms that use a single transducer aperture. Ensemble tracking, a recent speckle tracking method based upon parallel receive processing, is described. Experimental results with ensemble tracking indicate the ability to measure laminar flow in a phantom at a beam-vessel angle of 60 degrees, which had not been possible with previous 2D speckle tracking methods. Finally, important areas for future research in speckle tracking are briefly summarized.


Subject(s)
Blood Flow Velocity , Blood Vessels/diagnostic imaging , Algorithms , Humans , Phantoms, Imaging , Transducers , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...