Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Sci Total Environ ; 945: 173910, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38880149

ABSTRACT

Approximately 1.3 billion metric tons of agricultural and food waste is produced annually, highlighting the need for appropriate processing and management strategies. This paper provides an exhaustive overview of the utilization of agri-food waste as a biosorbents for the elimination of volatile organic compounds (VOCs) from gaseous streams. The review paper underscores the critical role of waste management in the context of a circular economy, wherein waste is not viewed as a final product, but rather as a valuable resource for innovative processes. This perspective is consistent with the principles of resource efficiency and sustainability. Various types of waste have been described as effective biosorbents, and methods for biosorbents preparation have been discussed, including thermal treatment, surface activation, and doping with nitrogen, phosphorus, and sulfur atoms. This review further investigates the applications of these biosorbents in adsorbing VOCs from gaseous streams and elucidates the primary mechanisms governing the adsorption process. Additionally, this study sheds light on methods of biosorbents regeneration, which is a key aspect of practical applications. The paper concludes with a critical commentary and discussion of future perspectives in this field, emphasizing the need for more research and innovation in waste management to fully realize the potential of a circular economy. This review serves as a valuable resource for researchers and practitioners interested in the potential use of agri-food waste biosorbents for VOCs removal, marking a significant first step toward considering these aspects together.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Air Pollutants/analysis , Waste Management/methods , Gases/analysis , Adsorption , Agriculture/methods , Food Loss and Waste
2.
BMC Chem ; 17(1): 122, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37735691

ABSTRACT

This paper provides an overview of recent research performed on the applications of metal-organic frameworks (MOFs) for microplastics (MPs) removal from aqueous environments. MPs pollution has become a major environmental concern due to its negative impacts on aquatic ecosystems and human health. Therefore, developing effective and sustainable methods for removing them from aqueous environments is crucial. In recent years, MOFs have emerged as a promising solution for this purpose due to their unique properties such as high surface area, renewability, chemical stability, and versatility. Moreover, their specific properties such as their pore size and chemical composition can be tailored to enhance their efficiency in removing MPs. It has been shown that MOFs can effectively adsorb MPs from aqueous media in the range of 70-99.9%. Besides some high price concerns, the main drawback of using MOFs is their powder form which can pose challenges due to their instability. This can be addressed by supporting MOFs on other substrates such as aerogels or foams. Meanwhile, there is a need for more research to investigate the long-term stability of MOFs in aqueous environments and developing efficient regeneration methods for their repeated use.

3.
Int J Mol Sci ; 24(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37445789

ABSTRACT

Recent findings qualified aldehydes as potential biomarkers for disease diagnosis. One of the possibilities is to use electrochemical biosensors in point-of-care (PoC), but these need further development to overcome some limitations. Currently, the primary goal is to enhance their metrological parameters in terms of sensitivity and selectivity. Previous findings indicate that peptide OBPP4 (KLLFDSLTDLKKKMSEC-NH2) is a promising candidate for further development of aldehyde-sensitive biosensors. To increase the affinity of a receptor layer to long-chain aldehydes, a structure stabilization of the peptide active site via the incorporation of different linkers was studied. Indeed, the incorporation of linkers improved sensitivity to and binding of aldehydes in comparison to that of the original peptide-based biosensor. The tendency to adopt disordered structures was diminished owing to the implementation of suitable linkers. Therefore, to improve the metrological characteristics of peptide-based piezoelectric biosensors, linkers were added at the C-terminus of OBPP4 peptide (KLLFDSLTDLKKKMSE-linker-C-NH2). Those linkers consist of proteinogenic amino acids from group one: glycine, L-proline, L-serine, and non proteinogenic amino acids from group two: ß-alanine, 4-aminobutyric acid, and 6-aminohexanoic acid. Linkers were evaluated with in silico studies, followed by experimental verification. All studied linkers enhanced the detection of aldehydes in the gas phase. The highest difference in frequency (60 Hz, nonanal) was observed between original peptide-based biosensors and ones based on peptides modified with the GSGSGS linker. It allowed evaluation of the limit of detection for nonanal at the level of 2 ppm, which is nine times lower than that of the original peptide. The highest sensitivity values were also obtained for the GSGSGS linker: 0.3312, 0.4281, and 0.4676 Hz/ppm for pentanal, octanal, and nonanal, respectively. An order of magnitude increase in sensitivity was observed for the six linkers used. Generally, the linker's rigidity and the number of amino acid residues are much more essential for biosensors' metrological characteristics than the amino acid sequence itself. It was found that the longer the linkers, the better the effect on docking efficiency.


Subject(s)
Biosensing Techniques , Peptides , Peptides/chemistry , Aldehydes/chemistry , Amino Acids/chemistry
4.
Chemosphere ; 313: 137609, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36566789

ABSTRACT

The present study systematically evaluated the potential of Candida subhashii, Fusarium solani and their consortium for the abatement of n-hexane, trichloroethylene (TCE), toluene and α-pinene in biofilters (BFs) and biotrickling filters (BTFs). Three 3.2 L BFs packed with polyurethane foam and operated at a gas residence time of 77 s with an air mixture of hydrophobic volatile organic compounds (VOCs) were inoculated with C. subhashii, F. solani and a combination of thereof. The systems were also operated under a BTF configuration with a liquid recirculating rate of 2.5 L h-1. Steady state elimination capacities (ECs) of total VOCs of 17.4 ± 0.7 g m-3 h-1 for C. subhashii, 21.2 ± 0.8 g m-3 h-1 for F. solani and 24.4 ± 1.4 g m-3 h-1 for their consortium were recorded in BFs, which increased up to 27.2 ± 1.6 g m-3 h-1, 29.2 ± 1.9 g m-3 h-1, 37.7 ± 3.3 g m-3 h-1 in BTFs. BTFs supported a superior biodegradation performance compared to BF, regardless of the VOCs. Moreover, a more effective VOC biodegradation was observed when C. subhashii and F. solani were grown as a consortium. The microbial analysis conducted revealed that the fungi initially introduced in each BF represented the dominant species by the end of the experiment, with C. subhashii gradually overcoming F. solani in the system inoculated with the fungal consortium.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Coculture Techniques , Bioreactors , Filtration , Gases , Biodegradation, Environmental , Air Pollutants/analysis
5.
Molecules ; 27(21)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36364485

ABSTRACT

Using bioconversion and simultaneous value-added product generation requires purification of the gaseous and the liquid streams before, during, and after the bioconversion process. The effect of diversified process parameters on the efficiency of biohydrogen generation via biological processes is a broad object of research. Biomass-based raw materials are often applied in investigations regarding biohydrogen generation using dark fermentation and photo fermentation microorganisms. The literature lacks information regarding model mixtures of lignocellulose and starch-based biomass, while the research is carried out based on a single type of raw material. The utilization of lignocellulosic and starch biomasses as the substrates for bioconversion processes requires the decomposition of lignocellulosic polymers into hexoses and pentoses. Among the components of lignocelluloses, mainly lignin is responsible for biomass recalcitrance. The natural carbohydrate-lignin shields must be disrupted to enable lignin removal before biomass hydrolysis and fermentation. The matrix of chemical compounds resulting from this kind of pretreatment may significantly affect the efficiency of biotransformation processes. Therefore, the actual state of knowledge on the factors affecting the culture of dark fermentation and photo fermentation microorganisms and their adaptation to fermentation of hydrolysates obtained from biomass requires to be monitored and a state of the art regarding this topic shall become a contribution to the field of bioconversion processes and the management of liquid streams after fermentation. The future research direction should be recognized as striving to simplification of the procedure, applying the assumptions of the circular economy and the responsible generation of liquid and gas streams that can be used and purified without large energy expenditure. The optimization of pre-treatment steps is crucial for the latter stages of the procedure.


Subject(s)
Hydrogen , Lignin , Biomass , Lignin/chemistry , Fermentation , Hydrogen/chemistry , Hydrolysis , Starch/metabolism
6.
Molecules ; 27(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35807428

ABSTRACT

This article presents a new way to determine odor nuisance based on the proposed odor air quality index (OAQII), using an instrumental method. This indicator relates the most important odor features, such as intensity, hedonic tone and odor concentration. The research was conducted at the compost screening yard of the municipal treatment plant in Central Poland, on which a self-constructed gas sensor array was placed. It consisted of five commercially available gas sensors: three metal oxide semiconductor (MOS) chemical sensors and two electrochemical ones. To calibrate and validate the matrix, odor concentrations were determined within the composting yard using the field olfactometry technique. Five mathematical models (e.g., multiple linear regression and principal component regression) were used as calibration methods. Two methods were used to extract signals from the matrix: maximum signal values from individual sensors and the logarithm of the ratio of the maximum signal to the sensor baseline. The developed models were used to determine the predicted odor concentrations. The selection of the optimal model was based on the compatibility with olfactometric measurements, taking the mean square error as a criterion and their accordance with the proposed OAQII. For the first method of extracting signals from the matrix, the best model was characterized by RMSE equal to 8.092 and consistency in indices at the level of 0.85. In the case of the logarithmic approach, these values were 4.220 and 0.98, respectively. The obtained results allow to conclude that gas sensor arrays can be successfully used for air quality monitoring; however, the key issues are data processing and the selection of an appropriate mathematical model.


Subject(s)
Air Pollution , Composting , Models, Theoretical , Odorants/analysis , Olfactometry
7.
Chemosphere ; 306: 135608, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35810858

ABSTRACT

This work systematically compared the potential of a conventional fungal biofilter (BF) and a fungal biotrickling filter (BTF) for the abatement of a mixture of hydrophobic volatile organic compounds (VOCs). Candida subhashii was herein used for the first time, to the best of the author's knowledge, to remove n-hexane, trichloroethylene, toluene and α-pinene under aerobic conditions. C. subhashii immobilized on polyurethane foam supported steady state removal efficiencies of n-hexane, trichloroethylene, toluene and α-pinene of 25.4 ± 0.9%, 20.5 ± 1.0%, 19.6 ± 1.5% and 25.6 ± 2.8% in the BF, and 35.7 ± 0.9%, 24.0 ± 1.6%, 44.0 ± 1.7% and 26.2 ± 1.8% in the BTF, respectively, at relatively short gas residence times (30 s). The ability of C. subhashii to biodegrade n-hexane, TCE, toluene and α-pinene was confirmed in a batch test conducted in serum bottles, where a biodegradation pattern (toluene ≈ n-hexane > α-pinene > trichloroethylene) comparable to that recorded in the BF and BTF was recorded.


Subject(s)
Air Pollutants , Trichloroethylene , Volatile Organic Compounds , Biodegradation, Environmental , Bioreactors/microbiology , Candida , Filtration , Fungi/metabolism , Toluene/metabolism , Volatile Organic Compounds/analysis
8.
Biosensors (Basel) ; 12(5)2022 May 07.
Article in English | MEDLINE | ID: mdl-35624609

ABSTRACT

Cleaning a quartz crystal microbalance (QCM) plays a crucial role in the regeneration of its biosensors for reuse. Imprecise removal of a receptor layer from a transducer's surface can lead to unsteady operation during measurements. This article compares three approaches to regeneration of the piezoelectric transducers using the electrochemical, oxygen plasma and Piranha solution methods. Optimization of the cleaning method allowed for evaluation of the influence of cleaning on the surface of regenerated biosensors. The effectiveness of cleaning the QCM transducers with a receptor layer in the form of a peptide with the KLLFDSLTDLKKKMSEC-NH2 sequence was described. Preliminary cleaning was tested for new electrodes to check the potential impact of the cleaning on deposition and the transducer's operation parameters. The effectiveness of the cleaning was assessed via the measurement of a resonant frequency of the QCM transducers. Based on changes in the resonant frequency and the Sauerbrey equation, it was possible to evaluate the changes in mass adsorption on the transducer's surface. Moreover, the morphology of the QCM transducer's surface subjected to the selected cleaning techniques was presented with AFM imaging. The presented results confirm that each method is suitable for peptide-based biosensors cleaning. However, the most invasive seems to be the Piranha method, with the greatest decrease in performance after regeneration cycles (25% after three cycles). The presented techniques were evaluated for their efficiency with respect to a selected volatile compound, which in the future should allow reuse of the biosensors in particular applications, contributing to cost reduction and extension of the sensors' lifetime.


Subject(s)
Biosensing Techniques , Quartz Crystal Microbalance Techniques , Biosensing Techniques/methods , Electrodes , Peptides , Quartz/chemistry
9.
Diagnostics (Basel) ; 11(10)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34679447

ABSTRACT

We aimed to evaluate the accuracy of ultrasonography with gynecologic examination performed by a gynecological oncologist and magnetic resonance imaging (MRI) interpreted by a radiologist for the local and regional staging of patients with early-stage cervical cancer. The study was a single-site sub-analysis of the multi-institutional prospective, observational Total Mesometrial Resection (TMMR) Register Study, which included all consecutive study patients from Gdynia Oncology Center. Imaging results were compared with pathology findings. A total of 58 consecutive patients were enrolled, and 50 underwent both ultrasonography and MRI. The accuracy of tumor detection and measurement errors was comparable across ultrasonography and MRI. There were no significant differences between ultrasonography and MRI in the accuracy of detecting parametrial involvement (92%, confidence interval (CI) 84-100% vs. 76%, CI 64-88%, p = 0.3), uterine corpus infiltration (94%, CI 87-100% vs. 86%, CI 76-96%, p = 0.3), and vaginal fornix involvement (96%, CI 91-100% vs. 76%, CI 64-88%, p = 0.3). The importance of uterine corpus involvement for the first-line lymph node metastases was presented in few cases. The accuracy of ultrasonography was higher than MRI for correctly predicting tumor stage: International Federation of Gynecology and Obstetrics (FIGO)-2018: 69%, CI 57-81% vs. 42%, CI 28-56%, p = 0.002, T (from TNM system): 79%, CI 69-90% vs. 52%, CI 38-66%, p = 0.0005, and ontogenetic tumor staging: 88%, CI 80-96% vs. 70%, CI 57-83%, p = 0.005. For patients with cervical cancer who are eligible for TMMR and therapeutic lymphadenectomy, the accuracy of ultrasonography performed by gynecological oncologists is not inferior to that of MRI interpreted by a radiologist for assessing specific local parameters, and is more accurate for local staging of the disease and is thus more clinically useful for planning adequate surgical treatment.

10.
Int J Mol Sci ; 22(17)2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34502455

ABSTRACT

During biogas combustion, siloxanes form deposits of SiO2 on engine components, thus shortening the lifespan of the installation. Therefore, the development of new methods for the purification of biogas is receiving increasing attention. One of the most effective methods is physical absorption with the use of appropriate solvents. According to the principles of green engineering, solvents should be biodegradable, non-toxic, and have a high absorption capacity. Deep eutectic solvents (DES) possess such characteristics. In the literature, due to the very large number of DES combinations, conductor-like screening models for real solvents (COSMO-RS), based on the comparison of siloxane activity coefficient of 90 DESs of various types, were studied. DESs, which have the highest affinity to siloxanes, were synthesized. The most important physicochemical properties of DESs were carefully studied. In order to explain of the mechanism of DES formation, and the interaction between DES and siloxanes, the theoretical studies based on σ-profiles, and experimental studies including the 1H NMR, 13C NMR, and FT-IR spectra, were applied. The obtained results indicated that the new DESs, which were composed of carvone and carboxylic acids, were characterized by the highest affinity to siloxanes. It was shown that the hydrogen bonds between the active ketone group (=O) and the carboxyl group (-COOH) determined the formation of stable DESs with a melting point much lower than those of the individual components. On the other hand, non-bonded interactions mainly determined the effective capture of siloxanes with DES.


Subject(s)
Biofuels , Cyclohexane Monoterpenes/chemistry , Siloxanes/isolation & purification , Solvents/chemistry , Absorption, Physicochemical
11.
Sensors (Basel) ; 21(15)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34372218

ABSTRACT

The article presents a new method of monitoring and assessing the course of the dry methane reforming process with the use of a gas sensor array. Nine commercially available TGS chemical gas sensors were used to construct the array (seven metal oxide sensors and two electrochemical ones). Principal Component Regression (PCR) was used as a calibration method. The developed PCR models were used to determine the quantitative parameters of the methane reforming process: Inlet Molar Ratio (IMR) in the range 0.6-1.5, Outlet Molar Ratio (OMR) in the range 0.6-1.0, and Methane Conversion Level (MCL) in the range 80-95%. The tests were performed on model gas mixtures. The mean error in determining the IMR is 0.096 for the range of molar ratios 0.6-1.5. However, in the case of the process range (0.9-1.1), this error is 0.065, which is about 6.5% of the measured value. For the OMR, an average error of 0.008 was obtained (which gives about 0.8% of the measured value), while for the MCL, the average error was 0.8%. Obtained results are very promising. They show that the use of an array of non-selective chemical sensors together with an appropriately selected mathematical model can be used in the monitoring of commonly used industrial processes.


Subject(s)
Gases , Methane , Models, Theoretical , Oxides
12.
Materials (Basel) ; 14(2)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33418968

ABSTRACT

The paper presents the screening of 20 deep eutectic solvents (DESs) composed of tetrapropylammonium bromide (TPABr) and glycols in various molar ratios, and 6 conventional solvents as absorbents for removal of siloxanes from model biogas stream. The screening was achieved using the conductor-like screening model for real solvents (COSMO-RS) based on the comparison of siloxane solubility in DESs. For the DES which was characterized by the highest solubility of siloxanes, studies of physicochemical properties, i.e., viscosity, density, and melting point, were performed. DES composed of tetrapropylammonium bromide (TPABr) and tetraethylene glycol (TEG) in a 1:3 molar ratio was used as an absorbent in experimental studies in which several parameters were optimized, i.e., the temperature, absorbent volume, and model biogas flow rate. The mechanism of siloxanes removal was evaluated by means of an experimental FT-IR analysis as well as by theoretical studies based on σ-profile and σ-potential. On the basis of the obtained results, it can be concluded that TPABr:TEG (1:3) is a very effective absorption solvent for the removal of siloxanes from model biogas, and the main driving force of the absorption process is the formation of the hydrogen bonds between DES and siloxanes.

13.
Molecules ; 27(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35011389

ABSTRACT

The methods for hydrogen yield efficiency improvements, the gaseous stream purification in gaseous biofuels generation, and the biomass pretreatment are considered as the main trends in research devoted to gaseous biofuel production. The environmental aspect related to the liquid stream purification arises. Moreover, the management of post-fermentation broth with the application of various biorefining techniques gains importance. Chemical compounds occurring in the exhausted liquid phase after biomass pretreatment and subsequent dark and photo fermentation processes are considered as value-added by products. The most valuable are furfural (FF), 5-hydroxymethylfurfural (HMF), and levulinic acid (LA). Enriching their solutions can be carried with the application of liquid-liquid extraction with the use of a suitable solvent. In these studies, hydrophobic deep eutectic solvents (DESs) were tested as extractants. The screening of 56 DESs was carried out using the Conductor-like Screening Model for Real Solvents (COSMO-RS). DESs which exposed the highest inhibitory effect on fermentation and negligible water solubility were prepared. The LA, FF, and HMF were analyzed using FT-IR and NMR spectroscopy. In addition, the basic physicochemical properties of DES were carefully studied. In the second part of the paper, deep eutectic solvents were used for the extraction of FF, LA, and HMF from post-fermentation broth (PFB). The main extraction parameters, i.e., temperature, pH, and DES: PFB volume ratio (VDES:VPFB), were optimized by means of a Box-Behnken design model. Two approaches have been proposed for extraction process. In the first approach, DES was used as a solvent. In the second, one of the DES components was added to the sample, and DES was generated in situ. To enhance the post-fermentation broth management, optimization of the parameters promoting HMF, FF, and LA extraction was carried under real conditions. Moreover, the antimicrobial effect of the extraction of FF, HMF, and LA was investigated to define the possibility of simultaneous separation of microbial parts and denatured peptides via precipitation.


Subject(s)
Deep Eutectic Solvents , Fermentation , Hydrophobic and Hydrophilic Interactions , Liquid-Liquid Extraction , Furaldehyde/analogs & derivatives , Furaldehyde/chemistry , Furaldehyde/isolation & purification , Green Chemistry Technology , Hydrogen Bonding , Levulinic Acids/chemistry , Levulinic Acids/isolation & purification , Liquid-Liquid Extraction/methods , Molecular Structure , Solubility , Spectrum Analysis
14.
Sensors (Basel) ; 20(19)2020 Sep 27.
Article in English | MEDLINE | ID: mdl-32992544

ABSTRACT

We describe a concept study in which the changes of concentration of benzene, toluene, ethylbenzene, and xylene (BTEX) compounds and styrene within a 3D printer enclosure during printing with different acrylonitrile butadiene styrene (ABS) filaments were monitored in real-time using a proton transfer reaction mass spectrometer and an electronic nose. The quantitative data on the concentration of the BTEX compounds, in particular the concentration of carcinogenic benzene, were then used as reference values for assessing the applicability of an array of low-cost electrochemical sensors in monitoring the exposure of the users of consumer-grade fused deposition modelling 3D printers to potentially harmful volatiles. Using multivariate statistical analysis and machine learning, it was possible to determine whether a set threshold limit value for the concentration of BTEX was exceeded with a 0.96 classification accuracy and within a timeframe of 5 min based on the responses of the chemical sensors.

15.
Biosens Bioelectron ; 150: 111923, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31787451

ABSTRACT

In the course of evolution, nature has endowed humans with systems for the recognition of a wide range of tastes with a sensitivity and selectivity which are indispensable for the evaluation of edibility and flavour attributes. Inspiration by a biological sense of taste has become a basis for the design of instruments, operation principles and parameters enabling to mimic the unique properties of their biological precursors. In response to the demand for fast, sensitive and selective techniques of flavouring analysis, devices belonging to the group of bioelectronic tongues (B-ETs) have been designed. They combine achievements of chemometric analysis employed for many years in electronic tongues (ETs), with unique properties of bio-inspired materials, such as natural taste receptors (TRs) regarding receptor/ligand affinity. Investigations of the efficiency of the prototype devices create new application possibilities and suggest successful implementation in real applications. With advances in the field of biotechnology, microfluidics and nanotechnologies, many exciting developments have been made in the design of B-ETs in the last five years or so. The presented characteristics of the recent design solutions, application possibilities, critical evaluation of potentialities and limitations as well as the outline of further development prospects related to B-ETs should contribute to the systematisation and expansion of our knowledge.


Subject(s)
Biosensing Techniques/instrumentation , Electronic Nose , Animals , Biomimetic Materials/metabolism , Biosensing Techniques/methods , Equipment Design , Humans , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Nanotechnology/instrumentation , Nanotechnology/methods , Taste Buds/metabolism , Tongue/physiology , Transducers
16.
Diagnostics (Basel) ; 9(4)2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31805677

ABSTRACT

The aim of this study was to describe the clinical and sonographic features of ovarian metastases originating from colorectal cancer (mCRC), and to discriminate mCRC from primary ovarian cancer (OC). We conducted a multi-institutional, retrospective study of consecutive patients with ovarian mCRC who had undergone ultrasound examination using the International Ovarian Tumor Analysis (IOTA) terminology, with the addition of evaluating signs of necrosis and abdominal staging. A control group included patients with primary OC. Clinical and ultrasound data, subjective assessment (SA), and an assessment of different neoplasias in the adnexa (ADNEX) model were evaluated. Fisher's exact and Student's t-tests, the area under the receiver-operating characteristic curve (AUC), and classification and regression trees (CART) were used to conduct statistical analyses. In total, 162 patients (81 with OC and 81 with ovarian mCRC) were included. None of the patients with OC had undergone chemotherapy for CRC in the past, compared with 40% of patients with ovarian mCRC (p < 0.001). The ovarian mCRC tumors were significantly larger, a necrosis sign was more frequently present, and tumors had an irregular wall or were fixed less frequently; ascites, omental cake, and carcinomatosis were less common in mCRC than in primary OC. In a subgroup of patients with ovarian mCRC who had not undergone treatment for CRC in anamnesis, tumors were larger, and had fewer papillations and more locules compared with primary OC. The highest AUC for the discrimination of ovarian mCRC from primary OC was for CART (0.768), followed by SA (0.735) and ADNEX calculated with CA-125 (0.680). Ovarian mCRC and primary OC can be distinguished based on patient anamnesis, ultrasound pattern recognition, a proposed decision tree model, and an ADNEX model with CA-125 levels.

17.
Sensors (Basel) ; 19(19)2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31623308

ABSTRACT

This paper presents the results of research on determining the optimal length of a peptide chain to effectively bind octanal molecules. Peptides that map the aldehyde binding site in HarmOBP7 were immobilized on piezoelectric transducers. Based on computational studies, four Odorant Binding Protein-derived Peptides (OBPPs) with different sequences were selected. Molecular modelling results of ligand docking with selected peptides were correlated with experimental results. The use of low-molecular synthetic peptides, instead of the whole protein, enabled the construction OBPPs-based biosensors. This work aims at developing a biomimetic piezoelectric OBPPs sensor for selective detection of octanal. Moreover, the research is concerned with the ligand binding affinity depending on different peptides' chain lengths. The authors believe that the chain length can have a substantial influence on the type and effectiveness of peptide-ligand interaction. A confirmation of in silico investigation results is the correlation with the experimental results, which shows that the highest affinity to octanal is exhibited by the longest peptide (OBPP4 - KLLFDSLTDLKKKMSEC-NH2). We hypothesized that the binding of long chain aldehydes to the peptide, mimicking the binding site of HarmOBP7, induced a conformational change in the peptide deposited on a selected transducer. The constructed OBPP4-based biosensors were able to selectively bind octanal in the gas phase. It was also shown that the sensors were characterized by high selectivity with respect to octanal, as well as to acetaldehyde and benzaldehyde. The results indicate that the OBPP4 peptide, mimicking the binding domain in the Odorant Binding Protein, can provide new opportunities for the development of biomimicking materials in the field of odor biosensors.


Subject(s)
Aldehydes/isolation & purification , Biosensing Techniques , Peptides/chemistry , Receptors, Odorant/chemistry , Aldehydes/chemistry , Binding Sites , Humans , Ligands , Models, Molecular , Odorants/analysis
18.
Sensors (Basel) ; 19(16)2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31398955

ABSTRACT

Measurement and monitoring of air quality in terms of odor nuisance is an important problem. From a practical point of view, it would be most valuable to directly link the odor intensity with the results of analytical air monitoring. Such a solution is offered by electronic noses, which thanks to the possibility of holistic analysis of the gas sample, allow estimation of the odor intensity of the gas mixture. The biggest problem is the occurrence of odor interactions between the mixture components. For this reason, methods that can take into account the interaction between components of the mixture are used to analyze data from the e-nose. In the presented study, the fuzzy logic algorithm was proposed for determination of odor intensity of binary mixtures of eight odorants: n-Hexane, cyclohexane, toluene, o-xylene, trimethylamine, triethylamine, α-pinene, and ß-pinene. The proposed algorithm was compared with four theoretical perceptual models: Euclidean additivity, vectorial additivity, U model, and UPL model.

19.
Anal Chim Acta ; 1077: 14-29, 2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31307702

ABSTRACT

Electronic nose (enose, EN) and electronic tongue (etongue, ET) have been designed to simulate human senses of smell and taste in the best possible way. The signals acquired from a sensor array, combined with suitable data analysis system, are the basis for holistic analysis of samples. The efficiency of these instruments, regarding classification, discrimination, detection, monitoring and analytics of samples in different types of matrices, is utilized in many fields of science and industry, offering numerous practical applications. Popularity of both types of devices significantly increased during the last decade, mainly due to improvement of their sensitivity and selectivity. The electronic senses have been employed in pharmaceutical sciences for, among others, formulation development and quality assurance. This paper contains a review of some particular applications of EN and ET based instruments in pharmaceutical industry. In addition, development prospects and a critical summary of the state of art in the field were also surveyed.


Subject(s)
Electronic Nose , Pharmaceutical Preparations/analysis , Chemistry Techniques, Analytical/instrumentation , Chemistry Techniques, Analytical/methods , Humans
20.
Article in English | MEDLINE | ID: mdl-31100774

ABSTRACT

The paper describes an attempt at health risk assessment and odour concentration determination in the most important units of a wastewater treatment plant. The cancer risk (CR) and hazard index (HI) parameters in selected measurement locations were calculated based on the results of chromatographic analyses (GCxGC-TOF-MS) and the United States Environmental Protection Agency (US EPA) guidelines. No exceedance of the CR and HI acceptable levels was observed for identified and quantitatively determined compounds from the VOCs group. The acceptable level was exceeded for the summary HI parameter. Following a classification of the International Agency for Research on Cancer (IARC), it was noticed that the highest hazard was connected to the presence of formaldehyde belonging to group 1-the compounds regarded as carcinogenic. Based on the olfactometric analyses, it was estimated that the highest odour concentration, 37.2 ou/m3, occurred at the solid waste composting piles. It was also revealed that an increase in odour concentration corresponded to a higher health risk for employees of the wastewater treatment plant, due to exposure to volatile odorous compounds. Accordingly, this method of odour measurement can be a fast indicator describing health risk level.


Subject(s)
Air Pollutants/analysis , Odorants/analysis , Volatile Organic Compounds/analysis , Waste Disposal, Fluid , Biological Monitoring , Composting , Humans , Olfactometry , Risk Assessment , Solid Waste
SELECTION OF CITATIONS
SEARCH DETAIL
...