Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Neurotoxicology ; 103: 189-197, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38876426

ABSTRACT

Graphene oxide (GO) nanoparticles are attracting growing interest in various fields, not least because of their distinct characteristics and possible uses. However, concerns about their impact on neurological health are emerging, underlining the need for in-depth studies to assess their neurotoxicity. This study examines GO exposure's neurobehavioral and biochemical effects on the central nervous system (CNS). To this end, we administered two doses of GO (2 and 5 mg/kg GO) to mice over a 46-day treatment period. We performed a battery of behavioral tests on the mice, including the open field to assess locomotor activity, the maze plus to measure anxiety, the pole test to assess balance and the rotarod to measure motor coordination. In parallel, we analyzed malondialdehyde (MDA) levels and catalase activity in the brains of mice exposed to GO nanoparticles. In addition, X-ray energy dispersive (EDX) analysis was performed to determine the molecular composition of the brain. Our observations reveal brain alterations in mice exposed to GO by intraperitoneal injection, demonstrating a dose-dependent relationship. We identified behavioral alterations in mice exposed to GO, such as increased anxiety, decreased motor coordination, reduced locomotor activity and balance disorders. These changes were dose-dependent, suggesting a correlation between the amount of GO administered and the extent of behavioral alterations. At the same time, a dose-dependent increase in malondialdehyde and catalase activity was observed, reinforcing the correlation between exposure intensity and associated biochemical responses.

2.
Environ Res ; 255: 119089, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38788787

ABSTRACT

Water pollution due to dyes in the textile industry is a serious environmental problem. During the finishing stage, Congo red (CR) dye, water-soluble, is released into wastewater, polluting the water body. This study explores the effectiveness of utilizing a composite composed of Safi raw clay and chitosan to remove an anionic dye from synthetic wastewater. The chitosan was extracted from crab shells. Its removal performance was compared to that of natural clay. Both the composite and raw clay were used to remove target pollutant. The effects of the chitosan load in the composite, size particles, initial dye concentration, contact time, pH, and temperature on the dye's elimination were tested in batch modes. The composite with 30% (w/w) of chitosan exhibited the highest dye removal. At pH 2, an adsorption capacity of 84.74 mg/g was achieved, indicating that the grafting of the polymer onto clay surface enhances its efficacity and stability in acidic environments. This finding was supported by characterization data obtained from X-ray diffraction (XRD), scanning electron microscopy (SEM), dispersive X-ray spectroscopy (EDX), and Fourier transform infrared (FT-IR) analyses. Under optimized conditions of 20 mg dose, pH 2, 30 min of reaction time, and 20 mg/L of dye concentration, about 92% of dye removal was achieved. The Langmuir isotherm model represents dye adsorption by the composite, while dye removal was controlled by pseudo-second-order model. Thermodynamic data of the adsorption (ΔH = +8.82 kJ/mol; ΔG <0) suggested that the dye adsorption was spontaneous and endothermic. The findings provide insights into the dye elimination by the adsorbent, indicating that the removal occurred via attractive colombic forces, as confirmed by density functional theory (DFT) analysis. Overall, the composite of natural clays and chitosan waste is a promising and innovative adsorbent for treating wastewater containing recalcitrant dyes.


Subject(s)
Chitosan , Clay , Coloring Agents , Congo Red , Water Pollutants, Chemical , Congo Red/chemistry , Chitosan/chemistry , Clay/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Coloring Agents/chemistry , Adsorption , Wastewater/chemistry , Water Purification/methods , Aluminum Silicates/chemistry , Hydrogen-Ion Concentration
3.
Environ Res ; 247: 118352, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38309561

ABSTRACT

Alizarin Red S (ARS) is commonly utilized for dyeing in textile industry. The dye represents a refractory pollutant in the aquatic environment unless properly treated. To tackle this pollutant, the applicability of chitosan-clay composite (3C) for the ARS removal from textile wastewater was studied. Characterization studies were conducted on the synthesized adsorbent using Fourier transformation infrared (FT-IR), X-ray diffraction (XRD), and energy dispersive X-ray (EDX) techniques. Optimized parameters such as adsorbent's dosage, pH, reaction time, and initial concentrations were tested in a batch system. Additionally, density functional theory (DFT) was calculated to understand the adsorption mechanism and the role of benzene rings and oxygen atoms in the ARS as electron donors. At the same initial concentration of 30 mg/L and optimized conditions of 50 mg of dose, pH 2, and 10 min of reaction time, about 86% of ARS removal was achieved using the composite. The pseudo-second-order kinetic was applicable to model a reasonable fitness of the adsorption reaction, while the Temkin model was representative to simulate the reaction with a maximum adsorption capacity of 44.39 mg/g. This result was higher than magnetic chitosan (40.12 mg/g), or pure chitosan (42.48 mg/g). With ΔH = 27.22 kJ/mol and ΔG<0, the data implied the endothermic and spontaneous nature of the adsorption process. Overall, this implies that the clay-chitosan composite is promising to remove target dye from contaminated wastewater.


Subject(s)
Anthraquinones , Chitosan , Environmental Pollutants , Water Pollutants, Chemical , Wastewater , Chitosan/chemistry , Clay/chemistry , Spectroscopy, Fourier Transform Infrared , Adsorption , Kinetics , Hydrogen-Ion Concentration , Thermodynamics
4.
Food Chem Toxicol ; 171: 113553, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36521574

ABSTRACT

Graphene oxide (GO) is a graphene derivative used for numerous applications in which biomedical uses are significant. However, for this application, the security of GO is doubtful. In this work, we synthesized this nanoparticle to assess its toxicity in male mice. In addition, we studied the effects of this nanomaterial on behavior by administering GO intraperitoneally to mice at different doses (2 mg/kg and 5 mg/kg) for five days. Subsequently, we performed biochemical analyses of blood serum and measured peroxidase and malondialdehyde (MDA) activity. Then, we performed histological sections to evaluate the brain's and liver's pathological and morphological changes. The data showed that the open field tests did not alter the locomotor activity. Furthermore, the elevated cross-maze tests showed no anxiety effect in the GO doses in the animals. The biochemical analyses indicated that GO influenced the level of biochemical parameters. Although, the oxidative stress assay showed an increase in peroxidase and MDA activity after GO intoxication. However, histopathological analysis of liver sections showed that GO caused liver inflammation, whereas, at the brain level, GO did not affect neuronal cells. The results indicate that GO caused toxic effects and that its toxicity could be mediated by oxidative stress.


Subject(s)
Graphite , Nanoparticles , Mice , Male , Animals , Oxides , Injections, Intraperitoneal , Oxidative Stress , Peroxidases
5.
Article in English | MEDLINE | ID: mdl-34870157

ABSTRACT

COVID-19 is an infectious disease that affects the respiratory system and is caused by the novel coronavirus SARS-CoV-2. It was first reported in Wuhan, China, on December 31, 2019, and has affected the entire world. This pandemic has caused serious health, economic and social problems. In this situation, the only solution to combat COVID-19 is to accelerate the development of antiviral drugs and vaccines to mitigate the virus and develop better antiviral methods and excellent diagnostic and prevention techniques. With the development of nanotechnology, nanoparticles are being introduced to control COVID-19. Graphene oxide (GO), an oxidized derivative of graphene, is currently used in the medical field to treat certain diseases such as cancer. It is characterized by very important antiviral properties that allow its use in treating certain infectious diseases. The GO antiviral mechanism is discussed by the virus inactivation and/or the host cell receptor or by the physicochemical destruction of viral species. Moreover, the very high surface/volume ratio of GO allows the fixation of biomolecules by simple absorption. This paper summarizes the different studies performed on GO's antiviral activities and discusses GO-based biosensors for virus detection and approaches for prevention.

6.
Biomed Res Int ; 2021: 5518999, 2021.
Article in English | MEDLINE | ID: mdl-34222470

ABSTRACT

Nanomaterials have been widely used in many fields in the last decades, including electronics, biomedicine, cosmetics, food processing, buildings, and aeronautics. The application of these nanomaterials in the medical field could improve diagnosis, treatment, and prevention techniques. Graphene oxide (GO), an oxidized derivative of graphene, is currently used in biotechnology and medicine for cancer treatment, drug delivery, and cellular imaging. Also, GO is characterized by various physicochemical properties, including nanoscale size, high surface area, and electrical charge. However, the toxic effect of GO on living cells and organs is a limiting factor that limits its use in the medical field. Recently, numerous studies have evaluated the biocompatibility and toxicity of GO in vivo and in vitro. In general, the severity of this nanomaterial's toxic effects varies according to the administration route, the dose to be administered, the method of GO synthesis, and its physicochemical properties. This review brings together studies on the method of synthesis and structure of GO, characterization techniques, and physicochemical properties. Also, we rely on the toxicity of GO in cellular models and biological systems. Moreover, we mention the general mechanism of its toxicity.


Subject(s)
Graphite/chemistry , Nanoparticles/toxicity , Algorithms , Animals , Biocompatible Materials , Crystallization , Drug Delivery Systems , Humans , In Vitro Techniques , Magnetic Resonance Spectroscopy , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanomedicine , Nanostructures , Oxygen/chemistry , Rats , Reproducibility of Results , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Temperature , Thermogravimetry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...