Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev Lett ; 106(7): 077401, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21405540

ABSTRACT

We propose subharmonic resonant optical excitation with femtosecond lasers as a new method for the characterization of phononic and nanomechanical systems in the gigahertz to terahertz frequency range. This method is applied for the investigation of confined acoustic modes in a free-standing semiconductor membrane. By tuning the repetition rate of a femtosecond laser through a subharmonic of a mechanical resonance we amplify the mechanical amplitude, directly measure the linewidth with megahertz resolution, infer the lifetime of the coherently excited vibrational states, accurately determine the system's quality factor, and determine the amplitude of the mechanical motion with femtometer resolution.

2.
Opt Express ; 18(5): 4939-47, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20389505

ABSTRACT

The photo-Dember effect is a source of impulsive THz emission following femtosecond pulsed optical excitation. This emission results from the ultrafast spatial separation of electron-hole pairs in strong carrier gradients due to their different diffusion coefficients. The associated time dependent polarization is oriented perpendicular to the excited surface which is inaptly for efficient out coupling of THz radiation. We propose a scheme for generating strong carrier gradients parallel to the excited surface. The resulting photo-Dember currents are oriented in the same direction and emit THz radiation into the favorable direction perpendicular to the surface. This effect is demonstrated for GaAs and In(0.53)Ga(0.47)As. Surprisingly the photo-Dember THz emitters provide higher bandwidth than photoconductive emitters. Multiplexing of phase coherent photo-Dember currents by periodically tailoring the photoexcited spatial carrier distribution gives rise to a strongly enhanced THz emission, which reaches electric field amplitudes comparable to a high-efficiency externally biased photoconductive emitter.

3.
Opt Express ; 18(6): 5974-83, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20389617

ABSTRACT

We report an ultrafast time-domain spectroscopy system based on high-speed asynchronous optical sampling operating without mechanical scanner. The system uses two 1 GHz femtosecond oscillators that are offset-stabilized using high-bandwidth feedback electronics operating at the tenth repetition rate harmonics. Definition of the offset frequency, i.e. the time-delay scan rate, in the range of a few kilohertz is accomplished using direct-digital-synthesis electronics for the first time. The time-resolution of the system over the full available 1 ns time-delay window is determined by the laser pulse duration and is 45 fs. This represents a three-fold improvement compared to previous approaches where timing jitter was the limiting factor. Two showcase experiments are presented to verify the high time-resolution and sensitivity of the system.


Subject(s)
Electronics/instrumentation , Lasers , Oscillometry/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Spectrum Analysis/instrumentation , Equipment Design , Equipment Failure Analysis , Feedback
4.
Opt Express ; 17(25): 22847-54, 2009 Dec 07.
Article in English | MEDLINE | ID: mdl-20052210

ABSTRACT

We report a terahertz time-domain spectrometer with more than 6 THz spectral coverage and 1 GHz resolution based on high-speed asynchronous optical sampling. It operates at 2 kHz scan rate without mechanical delay stage. The frequency error of the system at 60 s acquisition time is determined by comparing a measured water vapor absorption spectrum to data reported in the HITRAN database. The mean error of 87 evaluated absorption lines is 142 MHz.


Subject(s)
Terahertz Spectroscopy/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Terahertz Radiation
5.
Opt Express ; 16(8): 5397-405, 2008 Apr 14.
Article in English | MEDLINE | ID: mdl-18542642

ABSTRACT

We report an optical parametric oscillator (OPO) based on periodically poled lithium niobate (PPLN) that is synchronously pumped by a femtosecond Ti:sapphire laser at 1 GHz repetition rate. The signal output has a center wavelength of 1558 nm and its spectral bandwidth amounts to 40 nm. The OPO operates in a regime where the signal- and idler frequency combs exhibit a partial overlap around 1600 nm. In this near-degeneracy region, a beat at the offset between the signal and idler frequency combs is detected. Phase-locking this beat to an external reference stabilizes the spectral envelopes of the signal- and idler output. At the same time, the underlying frequency combs are stabilized relative to each other with an instability of 1.5x10(-17) at 1 s gate time.


Subject(s)
Computer-Aided Design , Filtration/instrumentation , Lasers, Semiconductor , Models, Theoretical , Niobium/chemistry , Niobium/radiation effects , Oxides/chemistry , Oxides/radiation effects , Signal Processing, Computer-Assisted/instrumentation , Computer Simulation , Equipment Design , Equipment Failure Analysis
6.
Opt Lett ; 32(17): 2553-5, 2007 Sep 01.
Article in English | MEDLINE | ID: mdl-17767302

ABSTRACT

We report a mode-locked Ti:sapphire femtosecond laser with 5GHz repetition rate. Spectral broadening of the 24 fs pulses in a microstructured fiber yields an octave-spanning spectrum and permits self-referencing and active stabilization of the emitted femtosecond laser frequency comb (FLFC). The individual modes of the 5 GHz FLFC are resolved with a high-resolution spectrometer based on a virtually imaged phased array spectral disperser. Isolation of single comb elements at a microwatt average power level is demonstrated. The combination of the high-power, frequency-stabilized 5 GHz laser and the straightforward resolution of its many modes will benefit applications in direct frequency comb spectroscopy. Additionally, such a stabilized FLFC should serve as a useful tool for direct mode-by-mode Fourier synthesis of optical waveforms.

SELECTION OF CITATIONS
SEARCH DETAIL