Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters










Publication year range
1.
J Acoust Soc Am ; 155(6): 3889-3899, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38888390

ABSTRACT

During NASA X-59 quiet supersonic aircraft community response tests, low-boom recordings will contain contaminating noise from instrumentation and ambient acoustical sources. This noise can inflate sonic boom perception metrics by several decibels. This paper discusses the development and comparison of robust lowpass filtering techniques for removing contaminating noise effects from low-boom recordings. The two filters are a time-domain Butterworth-magnitude filter and a frequency-domain Brick Wall filter. Both filters successfully reduce noise contamination in metric calculations for simulated data with real-world contaminating noise and demonstrate comparable performance to a modified ISO 11204 correction. The Brick Wall filter's success indicates that further attempts to match boom spectrum high-frequency roll-off beyond the contaminating noise floor are unnecessary and have marginal improvements on final metric calculations. Additionally, the Butterworth filter removes statistical correlation between ambient and boom levels for a real-world flight campaign, adding evidence that these techniques also work on other boom shapes. Overall, both filters can produce accurate metric calculations with only a few hundred hertz of positive signal-to-noise ratio. This work describes methods for accurate metric calculations in the presence of moderate noise contamination that should benefit X-59 and future low-boom supersonic aircraft testing.

2.
J Acoust Soc Am ; 155(2): 962-970, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38341729

ABSTRACT

Separating crowd responses from raw acoustic signals at sporting events is challenging because recordings contain complex combinations of acoustic sources, including crowd noise, music, individual voices, and public address (PA) systems. This paper presents a data-driven decomposition of recordings of 30 collegiate sporting events. The decomposition uses machine-learning methods to find three principal spectral shapes that separate various acoustic sources. First, the distributions of recorded one-half-second equivalent continuous sound levels from men's and women's basketball and volleyball games are analyzed with regard to crowd size and venue. Using 24 one-third-octave bands between 50 Hz and 10 kHz, spectrograms from each type of game are then analyzed. Based on principal component analysis, 87.5% of the spectral variation in the signals can be represented with three principal components, regardless of sport, venue, or crowd composition. Using the resulting three-dimensional component coefficient representation, a Gaussian mixture model clustering analysis finds nine different clusters. These clusters separate audibly distinct signals and represent various combinations of acoustic sources, including crowd noise, music, individual voices, and the PA system.

3.
J Acoust Soc Am ; 154(5): 2950-2958, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37943738

ABSTRACT

The National Transportation Noise Map (NTNM) gives time-averaged traffic noise across the continental United States (CONUS) using annual average daily traffic. However, traffic noise varies significantly with time. This paper outlines the development and utility of a traffic volume model which is part of VROOM, the Vehicular Reduced-Order Observation-based model, which, using hourly traffic volume data from thousands of traffic monitoring stations across CONUS, predicts nationwide hourly varying traffic source noise. Fourier analysis finds daily, weekly, and yearly temporal traffic volume cycles at individual traffic monitoring stations. Then, principal component analysis uses denoised Fourier spectra to find the most widespread cyclic traffic patterns. VROOM uses nine principal components to represent hourly traffic characteristics for any location, encapsulating daily, weekly, and yearly variation. The principal component coefficients are predicted across CONUS using location-specific features. Expected traffic volume model sound level errors-obtained by comparing predicted traffic counts to measured traffic counts-and expected NTNM-like errors, are presented. VROOM errors are typically within a couple of decibels, whereas NTNM-like errors are often inaccurate, even exceeding 10 decibels. This work details the first steps towards creation of a temporally and spectrally variable national transportation noise map.

4.
JASA Express Lett ; 3(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37987643

ABSTRACT

To improve acoustical models of super heavy-lift launch vehicles, this Letter reports Space Launch System's (SLS's) overall sound power level (OAPWL) and compares it to NASA's past lunar rocket, the Saturn V. Measurements made 1.4-1.8 km from the launchpad indicate that SLS produced an OAPWL of 202.4 (±0.5) dB re 1 pW and acoustic efficiency of about 0.33%. Adjustment of a static-fire sound power spectrum for launch conditions implies Saturn V was at least 2 dB louder than SLS with approximately twice the acoustic efficiency.

5.
J Acoust Soc Am ; 154(3): 1921-1931, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37756578

ABSTRACT

The distinctive geometry and structural characteristics of Balinese gamelan gongs lead to the instrument's unique sound and musical style. This work presents high-resolution directivity measurements of two types of gamelan gongs to quantify and better understand their acoustic behavior. The measured instruments' structural modes clearly impact their far-field directivity patterns, with the number of directional lobes corresponding to the associated structural mode shapes. Many of the lowest modes produce dipole-like radiation, with the dipole moment determined by the positions of the nodal and antinodal regions. Higher modes exhibit more complex patterns with multiple lobes often correlated with the location and number of antinodal regions on the gong's edge. Directivity indices correspond to dipole radiation at low frequencies and quadrupole radiation at intermediate and higher frequencies. Symmetry analysis confirms that the gong's rim significantly impacts the resultant directivity.

6.
J Acoust Soc Am ; 154(2): 1168-1178, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37610283

ABSTRACT

Modeling environmental sound levels over continental scales is difficult due to the variety of geospatial environments. Moreover, current continental-scale models depend upon machine learning and therefore face additional challenges due to limited acoustic training data. In previous work, an ensemble of machine learning models was used to predict environmental sound levels in the contiguous United States using a training set composed of 51 geospatial layers (downselected from 120) and acoustic data from 496 geographic sites from Pedersen, Transtrum, Gee, Lympany, James, and Salton [JASA Express Lett. 1(12), 122401 (2021)]. In this paper, the downselection process, which is based on factors such as data quality and inter-feature correlations, is described in further detail. To investigate additional dimensionality reduction, four different feature selection methods are applied to the 51 layers. Leave-one-out median absolute deviation cross-validation errors suggest that the number of geospatial features can be reduced to 15 without significant degradation of the model's predictive error. However, ensemble predictions demonstrate that feature selection results are sensitive to variations in details of the problem formulation and, therefore, should elicit some skepticism. These results suggest that more sophisticated dimensionality reduction techniques are necessary for problems with limited training data and different training and testing distributions.

7.
JASA Express Lett ; 3(7)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37404164

ABSTRACT

Classical jet noise theory indicates that radiated sound power is proportional to the jet velocity raised to the eighth and third powers for subsonic and supersonic jets, respectively. To connect full-scale measurements with classical jet noise theory, this letter presents sound power and acoustic efficiency values for an installed GE-F404 engine. When subsonic, the change in sound power follows the eighth-power law, and the sound power change approximately follows the third-power law at supersonic conditions, with an acoustic efficiency of ∼0.5-0.6%. However, the OAPWL increase from subsonic to supersonic jet velocities is greater than would be predicted.

8.
J Acoust Soc Am ; 153(4): 2262, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37092916

ABSTRACT

The nonlinear evolution of high-amplitude broadband noise is important to the psychoacoustic perception, usually annoyance, of high-speed jet noise. One method to characterize the nonlinear evolution of such noise is to consider a characteristic nonlinear waveform distortion length for the signal. A common length scale for this analysis is the shock formation distance of an initially sinusoidal signal. However, application of this length scale to broadband noise, even with the amplitude and source frequency replaced with characteristic values, may lead to underestimates of the overall nonlinear waveform distortion of the noise as indicated by the skewness of the time derivative of the acoustic pressure (or derivative skewness). This paper provides an alternative length scale derived directly from the evolution of the derivative skewness of Gaussian noise that may be more appropriate when analyzing the nonlinear evolution of broadband noise signals. This Gaussian-based length scale is shown to be a useful metric for its relative consistency and its physical interpretation. Various analytical predictions of the evolution of the derivative skewness for an ensemble of numerical simulations of noise propagation are used to highlight various aspects of this new length scale definition.

9.
JASA Express Lett ; 3(2): 023601, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36858987

ABSTRACT

To improve understanding of super heavy-lift rocket acoustics, this letter documents initial findings from noise measurements during liftoff of the Space Launch System's Artemis-I mission. Overall sound pressure levels, waveform characteristics, and spectra are described at distances ranging from 1.5 to 5.2 km. Significant results include: (a) the solid rocket boosters' ignition overpressure is particularly intense in the direction of the pad flame trench exit; (b) post-liftoff maximum overall levels range from 127 to 136 dB, greater than pre-launch predictions; and (c) the average maximum one-third-octave spectral peak occurred at 20 Hz, causing significant deviation between flat and A-weighted levels.

10.
JASA Express Lett ; 3(1): 014802, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36725532

ABSTRACT

High-fidelity measurement of sonic boom waveforms requires microphones and data acquisition hardware with flat frequency responses extending below 1 Hz. Hardware limitations can pose challenges meeting these requirements. This letter describes an engineering method involving digital pole-shift filtering that can be used in post-processing to extend effective hardware bandwidth. This approach is evaluated for sonic boom recordings from NASA's Quiet Supersonic Flights 2018 measurement campaign. Recordings of several booms at multiple measurement sites using different hardware/microphone combinations were used to design filters. Results demonstrate that the measurement-designed filters significantly reduce the mean square error between original and benchmark waveforms. Digital filter designs based on hardware manufacturer specifications also reduce error, but not as much. Residual errors after filtering, method limitations, and transferability to a launch vehicle reentry boom measurement are discussed.

11.
JASA Express Lett ; 2(10): 104001, 2022 10.
Article in English | MEDLINE | ID: mdl-36319210

ABSTRACT

Sonic boom measurements from recent flight tests have provided an opportunity to investigate effects of microphone installation on sonic boom waveforms, spectra, and metric levels in support of NASA X-59 flight test planning. While those flight tests used N-wave aircraft (F-18s), modeling studies were also conducted using source characteristics for a shaped low-boom aircraft. Of particular interest were the effects of receiver height on boom waveforms and metrics at elevated receiver positions, microphone installation, and local ground cover type. Reductions of more than 2 dB in A-weighted sound exposure level and perceived level were shown for 1.6 ft (0.48 m) microphone heights for 35º ray elevation angle. Measured and modeled results are described in this letter.


Subject(s)
Aircraft , Sound , Weather
12.
J Acoust Soc Am ; 152(2): 1068, 2022 08.
Article in English | MEDLINE | ID: mdl-36050168

ABSTRACT

The Saturn V is a monument to one of mankind's greatest achievements: the human Moon landings. However, online claims about this vehicle's impressive acoustics by well-meaning individuals are often based on misunderstood or incorrect data. This article, intended for both educators and enthusiasts, discusses topics related to rocket acoustics and documents what is known about the Saturn V's levels: overall power, maximum overall sound pressure, and peak pressure. The overall power level was approximately 204 dB re 1 pW, whereas its lesser sound pressure levels were impacted by source size, directivity, and propagation effects. As this article is part of a special issue on Education in Acoustics in The Journal of the Acoustical Society of America, supplementary Saturn V-related homework problems are included.


Subject(s)
Acoustics , Sound , Humans , Sound Spectrography
13.
J Acoust Soc Am ; 152(2): 835, 2022 08.
Article in English | MEDLINE | ID: mdl-36050179

ABSTRACT

Sounds to Astound is an acoustics demonstration show, produced for the community twice yearly by the Brigham Young University Student Chapter of the Acoustical Society of America. The free, interactive demonstration show explores the science of sound for a target audience of fifth- to eighth-grade students. Introductory acoustics concepts, such as longitudinal wave motion, wave properties, propagation effects, and standing waves, are taught with live demonstrations, animations, and videos. The goal of this paper is to inspire and encourage readers in their outreach efforts by describing the purposes of Sounds to Astound and technical details of several entertaining and educational demonstrations. Lessons learned from a decade of these student-produced shows serve as an aid for future efforts and highlight the benefits of outreach efforts, particularly for the students involved.


Subject(s)
Acoustics , Sound , Humans , Motion
14.
J Acoust Soc Am ; 151(6): 4053, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35778175

ABSTRACT

The phase and amplitude gradient estimator (PAGE) method [Thomas, Christensen, and Gee, J. Acoust. Soc. Am. 137, 3366-3376 (2015)] has been developed as an alternative to the traditional p-p method for calculating energy-based acoustic measures such as active acoustic intensity. While this method shows many marked improvements over the traditional method, such as a wider valid frequency bandwidth for broadband sources, contaminating noise can lead to inaccurate results. Contaminating noise degrades performance for both the traditional and PAGE methods and causes probe microphone pairs to exhibit low coherence. When coherence is low, better estimates of the pressure magnitude and gradient can be obtained by using a coherence-based approach, which yields a more accurate intensity estimate. This coherence-based approach to the PAGE method, known as the CPAGE method, employs two main coherence-based adjustments. The pressure magnitude adjustment mitigates the negative impact of uncorrelated contaminating noise and improves intensity magnitude calculation. The phase gradient adjustment uses coherence as a weighting to calculate the phase gradient for the probe and improves primarily the calculation of intensity direction. Though requiring a greater computation time than the PAGE method, the CPAGE method is shown to improve intensity calculations, both in magnitude and direction.

15.
Science ; 377(6601): 95-100, 2022 07.
Article in English | MEDLINE | ID: mdl-35549311

ABSTRACT

The 15 January 2022 climactic eruption of Hunga volcano, Tonga, produced an explosion in the atmosphere of a size that has not been documented in the modern geophysical record. The event generated a broad range of atmospheric waves observed globally by various ground-based and spaceborne instrumentation networks. Most prominent was the surface-guided Lamb wave (≲0.01 hertz), which we observed propagating for four (plus three antipodal) passages around Earth over 6 days. As measured by the Lamb wave amplitudes, the climactic Hunga explosion was comparable in size to that of the 1883 Krakatau eruption. The Hunga eruption produced remarkable globally detected infrasound (0.01 to 20 hertz), long-range (~10,000 kilometers) audible sound, and ionospheric perturbations. Seismometers worldwide recorded pure seismic and air-to-ground coupled waves. Air-to-sea coupling likely contributed to fast-arriving tsunamis. Here, we highlight exceptional observations of the atmospheric waves.


Subject(s)
Atmosphere , Sound , Volcanic Eruptions , Tonga
16.
J Acoust Soc Am ; 151(3): 1989, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35364919

ABSTRACT

Although near-field acoustical holography (NAH) and acoustic intensity analysis have previously been used to investigate the apparent jet noise sources produced by military aircraft, explicit connections to supersonic jet characteristics cannot be made due to a lack of information about the exhaust plume. To begin to bridge this gap and better understand the source information yielded by NAH, the current study instead applies NAH to a virtual measurement of the near-field pressures of a highly heated laboratory-scale supersonic jet generated by large-eddy simulation (LES). The holographic reconstructions of the pressure, particle velocity, and acoustic intensity are found to match the LES-generated acoustic field well and are used to calculate the acoustic power of the jet. The jet's calculated overall acoustic power is compared to the free-stream mechanical power, resulting in an acoustic efficiency of 1.5%. Ray-tracing of the acoustic intensity to the jet centerline generates an axial distribution of the acoustic power origin, showing that almost all the power originates from the supersonic portion of the flow and with the distribution peak upstream of the potential core tip. Holographic reconstruction of the pressures along the nozzle lipline captures the general spectral shape of the LES-generated pressures, though it underestimates the amplitude.

17.
J Acoust Soc Am ; 151(2): 752, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35232069

ABSTRACT

In 1971, the U.S. National Aeronautics and Space Administration (NASA) published a seminal report-NASA SP-8072-which compiled the results of the early supersonic jet noise studies and provided methods to calculate the noise produced from launch vehicles. Fifty years later and despite known limitations, SP-8072 remains the foundation for much of the launch vehicle noise modeling today. This article reviews what has been learned about the physics of noise generation and radiation from free and impinging rocket plumes since the completion of SP-8072. State-of-the-art methods for the mitigation of launch vehicle noise are also reviewed. A discussion of launch vehicle noise modeling, from empirical to numerical and including reduced-order models of supersonic jets, points to promising approaches that can describe rocket noise characteristics not captured by SP-8072.

18.
J Acoust Soc Am ; 151(2): 806, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35232117

ABSTRACT

This editorial's goals are (1) to highlight a few key developments in supersonic jet and launch vehicle noise research over the past several decades while describing some of the critical modern requirements facing government and industry organizations and (2) to summarize the contributions of the articles in this Supersonic Jet Noise special issue in the context of these developments and requirements.

19.
J Acoust Soc Am ; 150(1): 620, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34340507

ABSTRACT

This study investigates source-related noise characteristics of the Falcon 9, a modern launch vehicle with a high operational tempo. Empirical prediction of the noise characteristics of launched rockets has long been a topic of study; however, there are relatively few comparisons with high-fidelity, far-field data, and historical inconsistencies persist. Various quantities are considered: overall directivity, overall sound power, maximum overall sound pressure level (OASPL), and peak frequency. The noise directivity of the Falcon 9 vehicle is shown to be between two disparate ranges given in the historical literature, but the observed peak directivity angle is well represented using convective Mach number concepts. A comparison between mechanical and acoustic power yields a radiation efficiency is consistent with the literature. Two independent methods of predicting maximum OASPL produce results accurate within 2 dB, even at distances of several kilometers. Various scaling parameters are calculated for observed spectral peak frequency and connect these measurements with prior observations. Finally, the impact of terrain shielding on levels and spectra is assessed. These determined source characteristics of the Falcon 9 vehicle provide a connection to prior launch vehicle acoustics studies, which helps identify useful models and methods for understanding rocket noise.

20.
J Acoust Soc Am ; 149(4): 2403, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33940870

ABSTRACT

Skewness values for the pressure time derivative are greater at ground-based measurements near a tactical aircraft than they are at nearby off-ground locations. A possible explanation for this phenomenon is the occurrence of nonlinear, irregular shock reflections at the ground. Propagation angle, source location, and corresponding angle of incidence relative to the ground are estimated using a two-point cross correlation of windowed shock events. Nonlinear reflections are likely to occur based on the combination of angles of incidence and measured shock strengths and cause a pressure increase at the shock that is greater than twice the free-field pressure. The associated pressure increase at the shocks appears to enhance shock-related metrics at the ground compared to off-ground locations.

SELECTION OF CITATIONS
SEARCH DETAIL
...