Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 16(11): 2164-2173, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34558887

ABSTRACT

Myosin IIs, actin-based motors that utilize the chemical energy of adenosine 5'-triphosphate (ATP) to generate force, have potential as therapeutic targets. Their heavy chains differentiate the family into muscle (skeletal [SkMII], cardiac, smooth) and nonmuscle myosin IIs. Despite the therapeutic potential for muscle disorders, SkMII-specific inhibitors have not been reported and characterized. Here, we present the discovery, synthesis, and characterization of "skeletostatins," novel derivatives of the pan-myosin II inhibitor blebbistatin, with selectivity 40- to 170-fold for SkMII over all other myosin II family members. In addition, the skeletostatins bear improved potency, solubility, and photostability, without cytotoxicity. Based on its optimal in vitro profile, MT-134's in vivo tolerability, efficacy, and pharmacokinetics were determined. MT-134 was well-tolerated in mice, impaired motor performance, and had excellent exposure in muscles. Skeletostatins are useful probes for basic research and a strong starting point for drug development.


Subject(s)
Heterocyclic Compounds, 4 or More Rings/chemistry , Myosin Type II/antagonists & inhibitors , Animals , Mice , Molecular Structure , Muscle, Skeletal/metabolism , Myosin Type II/metabolism , Myosin Type II/toxicity
2.
Bioorg Med Chem Lett ; 29(19): 126632, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31474484

ABSTRACT

Allosteric inhibitors of glutaminase (GAC), such as BPTES, CB-839 and UPGL00019, have great promise as inhibitors of cancer cell growth, but potent inhibitors with drug-like qualities have been difficult to achieve. Here, a small library of GAC inhibitors based on the UPGL00019 core is described. This set of derivatives was designed to assess if one or both of the phenylacetyl groups flanking the UPGL00019 core can be replaced by smaller simple aliphatic acyl groups without loss in potency. We found that one of the phenylacetyl moieties can be replaced by a set of small aliphatic moieties without loss in potency. We also found that enzymatic potency co-varies with the VDW volume or the maximum projection area of the groups used as replacements of the phenylacetyl moiety and used literature X-ray data to provide an explanation for this finding.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Enzyme Inhibitors/pharmacology , Glutaminase/antagonists & inhibitors , Piperidines/chemistry , Small Molecule Libraries/pharmacology , Antineoplastic Agents/chemistry , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Cell Proliferation , Enzyme Inhibitors/chemistry , Female , Humans , Models, Molecular , Molecular Structure , Small Molecule Libraries/chemistry , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...