Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-29685979

ABSTRACT

The ability to target DNA specifically at any given position within the genome allows many intriguing possibilities and has inspired scientists for decades. Early gene-targeting efforts exploited chemicals or DNA oligonucleotides to interfere with the DNA at a given location in order to inactivate a gene or to correct mutations. We here describe an example towards correcting a genetic mutation underlying Pompe's disease using a nucleotide-fused nuclease (TFO-MunI). In addition to the promise of gene correction, scientists soon realized that genes could be inactivated or even re-activated without inducing potentially harmful DNA damage by targeting transcriptional modulators to a particular gene. However, it proved difficult to fuse protein effector domains to the first generation of programmable DNA-binding agents. The engineering of gene-targeting proteins (zinc finger proteins (ZFPs), transcription activator-like effectors (TALEs)) circumvented this problem. The disadvantage of protein-based gene targeting is that a fusion protein needs to be engineered for every locus. The recent introduction of CRISPR/Cas offers a flexible approach to target a (fusion) protein to the locus of interest using cheap designer RNA molecules. Many research groups now exploit this platform and the first human clinical trials have been initiated: CRISPR/Cas has kicked off a new era of gene targeting and is revolutionizing biomedical sciences.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.


Subject(s)
DNA/chemistry , Gene Targeting , RNA/chemistry , Humans
2.
Mol Genet Metab ; 92(4): 299-307, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17826266

ABSTRACT

Pompe disease is a rare autosomal recessive lysosomal storage disease caused by deficiency of acid-alpha-glucosidase (GAA). This deficiency results in glycogen accumulation in the lysosomes, leading to lysosomal swelling, cellular damage and organ dysfunction. In early-onset patients (the classical infantile form and juvenile form) this glycogen accumulation leads to death. The only therapy clinically available is enzyme replacement therapy, which compensates for the missing enzyme by i.v. administration of recombinant produced enzyme. The development of clinically relevant animal models gained more insight in the disease and allowed evaluation of recombinant enzyme therapy. Several therapies are currently under investigation for Pompe disease, including gene therapy. This review gives an overview of the available knockout mouse models, of the in vitro and in vivo studies performed using recombinant produced enzyme. Furthermore, it describes current therapeutic approaches for Pompe disease as well as experimental therapies like gene correction therapy.


Subject(s)
Glycogen Storage Disease Type II/drug therapy , Glycogen Storage Disease Type II/physiopathology , alpha-Glucosidases/therapeutic use , Animals , Disease Models, Animal , Genetic Therapy , Glucan 1,4-alpha-Glucosidase/deficiency , Glucan 1,4-alpha-Glucosidase/therapeutic use , Glycogen Storage Disease Type II/enzymology , Humans , Mice , Mice, Knockout , Therapies, Investigational , alpha-Glucosidases/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL
...