Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Type of study
Language
Publication year range
1.
Int. microbiol ; 27(2): 525-534, Abr. 2024. mapas
Article in English | IBECS | ID: ibc-232298

ABSTRACT

Although coffee leaf rust (CLR), caused by Hemileia vastatrix, poses an increasing threat to coffee production in Ethiopia, little is known regarding its genetic diversity and structure and how these are affected by coffee management. Here, we used genetic fingerprinting based on sequence-related amplified polymorphism (SRAP) markers to genotype H. vastatrix samples from different coffee shrubs, across 40 sites, covering four coffee production systems (forest coffee, semi plantation coffee, home garden coffee, and plantation coffee) and different altitudes in Ethiopia. In total, 96 H. vastatrix samples were successfully genotyped with three primer combinations, producing a total of 79 scorable bands. We found 35.44% of amplified bands to be polymorphic, and the polymorphic information content (PIC) was 0.45, suggesting high genetic diversity among our CLR isolates. We also found significant isolation-by-distance across the samples investigated and detected significant differences in fungal genetic composition among plantation coffee and home garden coffee and a marginally significant difference among plantation coffee and forest coffee. Furthermore, we found a significant effect of altitude on CLR genetic composition in the forest coffee and plantation systems. Our results suggest that both spore dispersal and different selection pressures in the different coffee management systems are likely responsible for the observed high genetic diversity and genetic structure of CLR isolates in Ethiopia. When selecting Ethiopian coffee genotypes for crop improvement, it is important that these genotypes carry some resistance against CLR. Because our study shows large variation in genetic composition across relatively short geographical distances, a broad selection of rust isolates must be used for coffee resistance screening.(AU)


Subject(s)
Humans , Basidiomycota/genetics , Coffee/genetics , Coffee/microbiology , Plant Diseases/microbiology , Ethiopia
2.
Int Microbiol ; 27(2): 525-534, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37507629

ABSTRACT

Although coffee leaf rust (CLR), caused by Hemileia vastatrix, poses an increasing threat to coffee production in Ethiopia, little is known regarding its genetic diversity and structure and how these are affected by coffee management. Here, we used genetic fingerprinting based on sequence-related amplified polymorphism (SRAP) markers to genotype H. vastatrix samples from different coffee shrubs, across 40 sites, covering four coffee production systems (forest coffee, semi plantation coffee, home garden coffee, and plantation coffee) and different altitudes in Ethiopia. In total, 96 H. vastatrix samples were successfully genotyped with three primer combinations, producing a total of 79 scorable bands. We found 35.44% of amplified bands to be polymorphic, and the polymorphic information content (PIC) was 0.45, suggesting high genetic diversity among our CLR isolates. We also found significant isolation-by-distance across the samples investigated and detected significant differences in fungal genetic composition among plantation coffee and home garden coffee and a marginally significant difference among plantation coffee and forest coffee. Furthermore, we found a significant effect of altitude on CLR genetic composition in the forest coffee and plantation systems. Our results suggest that both spore dispersal and different selection pressures in the different coffee management systems are likely responsible for the observed high genetic diversity and genetic structure of CLR isolates in Ethiopia. When selecting Ethiopian coffee genotypes for crop improvement, it is important that these genotypes carry some resistance against CLR. Because our study shows large variation in genetic composition across relatively short geographical distances, a broad selection of rust isolates must be used for coffee resistance screening.


Subject(s)
Basidiomycota , Coffea , Coffea/genetics , Coffea/microbiology , Ethiopia , Basidiomycota/genetics , Polymorphism, Genetic , Plant Diseases/microbiology
3.
Microbiologyopen ; 11(6): e1337, 2022 12.
Article in English | MEDLINE | ID: mdl-36479626

ABSTRACT

Although microbial communities of insects from larval to adult stage have been increasingly investigated in recent years, little is still known about the diversity and composition of egg-associated microbiomes. In this study, we used high-throughput amplicon sequencing and quantitative PCR to get a better understanding of the microbiome of insect eggs and how they are established using the Southern green stinkbug Nezara viridula (L.) (Hemiptera: Pentatomidae) as a study object. First, to determine the bacterial community composition, egg masses from two natural populations in Belgium and Italy were examined. Subsequently, microbial community establishment was assessed by studying stinkbug eggs of different ages obtained from laboratory strains (unlaid eggs collected from the ovaries, eggs less than 24 h old, and eggs collected 4 days after oviposition). Both the external and internal egg-associated microbiomes were analyzed by investigating egg washes and surface-sterilized washed eggs, respectively. Eggs from the ovaries were completely devoid of bacteria, indicating that egg-associated bacteria were deposited on the eggs during or after oviposition. The bacterial diversity of deposited eggs was very low, with on average 6.1 zero-radius operational taxonomic units (zOTUs) in the external microbiome and 1.2 zOTUs in internal samples of egg masses collected from the field. Bacterial community composition and density did not change significantly over time, suggesting limited bacterial growth. A Pantoea-like symbiont previously found in the midgut of N. viridula was found in every sample and generally occurred at high relative and absolute densities, especially in the internal egg samples. Additionally, some eggs harbored a Sodalis symbiont, which has previously been found in the abdomen of several insects, but so far not in N. viridula populations. We conclude that the egg-associated bacterial microbiome of N. viridula is species-poor and dominated by a few symbionts, particularly the species-specific obligate Pantoea-like symbiont.


Subject(s)
Hemiptera , Microbiota , Animals , Belgium , Italy
SELECTION OF CITATIONS
SEARCH DETAIL
...